(c) the fraction of energy lost during the impact
That's false. Think about a stone or a baseball, during the first
several seconds after you tossed it straight up, before it reaches
its maximum height and starts to come down again.
There's no upward force on it during that time.
Also, after a roller coaster reaches the top of the FIRST hill, there's
no upward force on it for the whole rest of the ride, even though it
coasts up many more hills.
It will be a straight horizontal line on the graph
Answer:
The only difference between a planet and a dwarf planet is the area surrounding each celestial body. A dwarf planet has not cleared the area around its orbit, while a planet has.
Explanation:
the three criteria of the IAU for a full-sized planet are: It is in orbit around the Sun. It has sufficient mass to assume hydrostatic equilibrium (a nearly round shape). It has "cleared the neighborhood" around its orbit .
Answer:
286.7 m
Explanation:
So we are assuming the PE of the falcon is converted to KE
KE = PE
1/2 (.480)(75)^2 = .480 (9.81)(h ) solve for h = 286.7 m