1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
3 years ago
12

Starting from rest, a car travels 18 meters as it accelerates uniformly for 3.0 seconds. What is the magnitude of

Physics
1 answer:
omeli [17]3 years ago
8 0

Answer:

a=4\frac{m}{s^2}

Explanation:

Hello.

In this case, for this uniformly accelerated motion in which the car starts from rest at 0 m/s and travels 18 m in 3.0 s, we can compute the acceleration by using the following equation:

x_f=x_0+v_0t+\frac{1}{2}at^2

Whereas the final distance is 18 m, the initial distance is 0 m, the initial velocity is 0 m/s and the time is 3.0 s, that is why the acceleration turns out:

a=\frac{2(x_f-v_ot)}{t^2} =\frac{2(18m-0m/s*3.0s)}{(3.0s)^2}\\ \\a=4\frac{m}{s^2}

Best regards.

You might be interested in
A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent
azamat

The wavelengths of the constituent travelling waves CANNOT be 400 cm.

The given parameters:

  • <em>Length of the string, L = 100 cm</em>

<em />

The wavelengths of the constituent travelling waves is calculated as follows;

L = \frac{n \lambda}{2} \\\\n\lambda = 2L\\\\\lambda = \frac{2L}{n}

for first mode: n = 1

\lambda = \frac{2\times 100 \ cm}{1} \\\\\lambda = 200 \ cm

for second mode: n = 2

\lambda = \frac{2L}{2} = L = 100 \ cm

For the third mode: n = 3

\lambda = \frac{2L}{3} \\\\\lambda = \frac{2 \times 100}{3} = 67 \ cm

For fourth mode: n = 4

\lambda = \frac{2L}{4} \\\\\lambda = \frac{2 \times 100}{4} = 50  \ cm

Thus, we can conclude that, the wavelengths of the constituent travelling waves CANNOT be 400 cm.

The complete question is below:

A string of length 100 cm is held fixed at both ends and vibrates in a standing wave pattern. The wavelengths of the constituent travelling waves CANNOT be:

A. 400 cm

B. 200 cm

C. 100 cm

D. 67 cm

E. 50 cm

Learn more about wavelengths of travelling waves here: brainly.com/question/19249186

5 0
2 years ago
A quarterback throws a football 40 yards in 4 seconds.what is the average speed the football
lions [1.4K]
The answer is 10 yards per second

8 0
3 years ago
Read 2 more answers
Gravitational notes of physics ​
Pachacha [2.7K]

Answer:

Every object in the universe attracts other object by a force of attraction, called gravitation, which is directly proportional to the product of masses of the objects and inversely proportional to the square of distance between them. This is called Law of Gravitation or Universal Law of Gravitation.

Let masses (M) and (m) of two objects are distance (d) apart. Let F be the attractional force between two masses.

Importance of The Universal Law of Gravitation

It binds us to the earth.

It is responsible for the motion of the moon around the earth.

It is responsible for the motion of planets around the Sun.

Gravitational force of moon causes tides in seas on earth.

Free Fall

When an object falls from any height under the influence of gravitational force only, it is known as free fall.

Acceleration Due to Gravity

When an object falls towards the earth there is a change in its acceleration due to the gravitational force of the earth. So this acceleration is called acceleration due to gravity.

The acceleration due to gravity is denoted by g.

The unit of g is same as the unit of acceleration, i.e., ms−2

Mathematical Expression for g

From the second law of motion, force is the product of mass and acceleration.

F = ma

For free fall, acceleration is replaced by acceleration due to gravity.

Therefore, force becomes:

F = mg ….(i)

But from Universal Law of Gravitation,

Factors Affecting the Value of g

As the radius of the earth increases from the poles to the equator, the value of g becomes greater at the poles than at the equator.

As we go at large heights, value of g decreases.

To Calculate the Value of g

Value of universal gravitational constant, G = 6.7 × 10–11 N m2/ kg2,

Mass of the earth, M = 6 × 1024 kg, and

Radius of the earth, R = 6.4 × 106 m

Putting all these values in equation (iii), we get:

Thus, the value of acceleration due to gravity of the earth, g = 9.8 m/s2.

Difference between Gravitation Constant (G) and Gravitational Acceleration (g)

S. No.

Gravitation Constant (G)

Gravitational acceleration (g)

1.

Its value is 6.67×10-11Nm2/kg2.

Its value is 9.8 m/s2.

2.

It is a scalar quantity.

It is a vactor quantity.

3.

Its value remains constant always and everywhere.

Its value varies at various places.

4.

Its unit is Nm2/kg2.

Its unit is m/s2.

Motion of Objects Under the Influence of Gravitational Force of the Earth

Let an object is falling towards earth with initial velocity u. Let its velocity, under the effect of gravitational acceleration g, changes to v after covering the height h in time t.

Then the three equations of motion can be represented as:

Velocity (v) after t seconds, v = u + ght

Height covered in t seconds, h = ut + ½gt2

Relation between v and u excluding t, v2 = u2 + 2gh

The value of g is taken as positive in case of the object is moving towards earth and taken as negative in case of the object is thrown in opposite direction of the earth.

Mass & weight

Mass (m)

The mass of a body is the quantity of matter contained in it.

Mass is a scalar quantity which has only magnitude but no direction.

Mass of a body always remains constant and does not change from place to place.

SI unit of mass is kilogram (kg).

Mass of a body can never be zero.

Weight (W)

The force with which an object is attracted towards the centre of the earth, is called the weight of the object.

Now, Force = m × a

But in case of earth, a = g

∴ F = m × g

But the force of attraction of earth on an object is called its weight (W).

∴ W = mg

As weight always acts vertically downwards, therefore, weight has both magnitude and direction and thus it is a vector quantity.

The weight of a body changes from place to place, depending on mass of object.

The SI unit of weight is Newton.

Weight of the object becomes zero if g is zero.

Weight of an Object on the Surface of Moon

Mass of an object is same on earth as well as on moon. But weight is different.

Weight of an object is given as,

Hence, weight of the object on the moon = (1/6) × its weight on the earth.

Try the following questions:

Q1. State the universal law of gravitation.

Q2. When we move from the poles to the equator, the value of g decreases. Why?

Q3. If two stones of 150 gm and 500 gm are dropped from a height, which stone will reach the surface of the earth first and why ?

Q4. Differentiate between weight and mass.

Q5. Why is the weight of an object on the moon 1/6th its weight on the earth??

7 0
3 years ago
What is one benefit to lifelong physical activity?How can you measure your level of intensity during a physical activity?
daser333 [38]
It will lower your Chances of diseases, heart attack, and cholesterol. you can measure your intensity by making sure your body is under a safe amount of stress
5 0
3 years ago
What are the differently types of motion in a bicycle?
Ksivusya [100]
The two types of motion exerted in bicycle are:
1. rotary motion
2. linear motion
7 0
3 years ago
Other questions:
  • A golfer hits a golf ball at an angle of 30 degrees from the ground, with an initial velocity of 120 ft/sec. It lands on the gro
    10·1 answer
  • The electric field of an infinite charged plane is constant everywhere in space. true or false.
    10·1 answer
  • Natural gas, a nonrenewable fossil fuel, is often seen as an alternative fuel in the worldwide transition to a renewable energy
    9·1 answer
  • A planet has two moons with identical mass. Moon 1 is in a circular orbit of radius r. Moon 2 is in a circular orbit of radius 2
    11·1 answer
  • A man has a weight of 100 Newtons. How much work is done if he climbs 4meters up a ladder?
    14·1 answer
  • a family drives from boston (100 miles away) to new york (500 miles away) in 10 hours . How fast were they were traveling?
    13·1 answer
  • In 1970, a rocket powered car called Blue Flame achieved a maximum speed of 1.00(10 km/h (278m/s).Suppose the magnitude of the c
    10·1 answer
  • Spaceship 1 and Spaceship 2 have equal masses of 200 kg. Spaceship 1 has a speed of 0 m/s, and Spaceship 2 has a speed of 6 m/s.
    6·1 answer
  • If a substance changes from a vapor to a liquid it ____ HELP FAST
    6·1 answer
  • A body is oscillating up and down at the end of a spring. Let’s consider when the body is at the top of its up-and-down motion.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!