The answer which is false is, gene flow leads to divergence and the formation of new species.
What is speciation?
For speciation to occur two populations must be prevented from interbreeding.
This means that populations must become isolated from on another through the geographical or biological barriers.
If populations remain isolated long enough, speciation will eventually occur because of changes accumulated in population due to natural selection.
What is gene flow?
Geographical isolation hampers gene flow because of spatial separation which in turn leads of reproductive isolation due to the inability of meeting gametes to leads.
It causes genetic drift due to the barrier of gene flow between them and parent species.
Certain alleles get fixed into population due to inbreeding in a smaller population while other gets eliminated, this leads to formation of new alleles and new gene pool, so-called progressive genetic divergence.
Finally there is the formation of new species when genetic variation are accumulated for several generations.
learn more about gene flow at
brainly.com/question/2698940
#SPJ4
Both dolphins and whales still have their hip (pelvic) bones present. These bones connect and transfer the weight of the trunk to the lower limbs.
Thus, <em>the presence of the pelvic bone may indicate that whales had ancestors that walked on land</em>.
Answer:
The correct order is dehydration, embed in wax, cut into sections, staining
Explanation:
There are certain proceedings needed to obtain stained sections of vegetable or animal tissues for their microscope observations.
These steps are:
- Obtention of the material: The tissue is cut to an adequate size.
- Fixation: When tissues are extracted from the organism, they suffer autolysis and putrefaction, so they need to be fixated in order to keep their cells in the best state possible. Fixation involves preserving the original morphological and molecular characteristics of the tissue. Fixation avoids autolysis, putrefaction, distortion, and retraction of cells and the tissue that could affect its volume or morphology.
- Dehydration. Once fixated, the fixator must be eliminated and the tissue is dehydrated by using a gradual series of solutions with alcohol in ascendant concentrations. Dehydration must be gradual to avoid tissue deformation.
- Inclusion. To obtain thin cuts that can be observed under the optic microscope, the tissues must be included in a consistent, firm substance, that might be either hydrophilic or hydrophobic. A hydrophobic medium is paraffin wax, that provides hardness and plasticity.
- Cut. The tissue included in wax must be cut in slides or sections thin enough to allow the diffusion and penetration of light. A microtome is used to perform these cuts. When using paraffine for tissue inclusion, the cuts are about 5 to 20 micrometers of thickness.
- Stain. Once the cuts are performed, paraffin wax must be eliminated. This can be done by using an organic solvent. Then the tissue must be stained. Hematoxylin and Eosin are the most common dyes. Animal tissues in general do not have any natural color, so they need to be stained to be observed.
Answer:Biological structures are able to adapt their growth to external mechanical stimuli and impacts. For example, when plants are under external loads, such as wind force and self-weight, the overloaded zones are reinforced by local growth acceleration and the unloaded zones stop growing or even shrink. Such phenomena are recorded in the annual rings of trees. Through his observation of the stems of spruce, K. Metzger, a German forester and author, realized that the final goal of the adaptive growth exhibited by biological structures over time is to achieve uniform stress distribution within them. He published his discovery in 1893.12 A team of scientists at Karlsruhe Research Centre adopted Metzger's observations and developed them to one single design rule: the axiom of uniform stress. The methods derived from this rule are simple and brutally successful like nature itself. An excellent account of the uniform-stress axiom and the optimization methods derived from it is given by Claus Mattheck in his book ‘Design in Nature’.13 The present study utilizes one of these methods, stress-induced material transformation (SMT), to optimize the cavity shape of dental restorations.
Explanation: