1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lena [83]
3 years ago
13

What is the slope of the line that contains the points -4,2 and 6,3

Mathematics
1 answer:
ExtremeBDS [4]3 years ago
7 0

Answer:

1/10

Step-by-step explanation:

slope of a line is m

m=y2-y1/x2-x1 = 3-2/6-(-4)= 1/10

You might be interested in
(x^3+3x^2-x-3)÷(x-1) solve using long division must show work​
garik1379 [7]
The answer to the question

6 0
3 years ago
Find the perimeter of the polygon.<br> a. 25 cm<br> b. 20 cm<br> C. 30 cm<br> d. 28 cm
ddd [48]
The answer is (a. 25cm)
4 0
3 years ago
Read 2 more answers
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Ginger buys lunch at school every day. She always gets
shepuryov [24]

Answer:

The estimated probability that Ginger will eat a a pizza everyday of the week is;

D. 8/10 = 80%

Step-by-step explanation:

The given parameters are;

The frequency with which Ginger buys launch = Everyday

The percentage of the time the cafeteria has pizza out = 80%

The outcome of 0 and 1 = No pizza available

The outcome of 2, 3, 4, 5, 6, 7, 8, and 9 = Pizza available

Therefore, we have the;

Group number  {}                          Percentage of time pizza available

1                     {}                          80%

2                     {}                          80%

3                     {}                          80%

4                     {}                          80%

5                     {}                          40%

6                     {}                          100%

7                     {}                          80%

8                     {}                          100%

9                     {}                          80%

10                     {}                          80%

Therefore, the sum of the percentages outcome the days Ginger eats pizza = 0.8 + 0.8 + 0.8 + 0.8 + 0.4 + 1 + 0.8 + 1 + 0.8 + 0.8 = 8

The number of runs of simulation = 10 runs

The estimated probability that Ginger will eat a a pizza everyday of the week = (The sum of the percentages outcome the days Ginger eats pizza)/(The number of runs of simulation)

∴ The estimated probability that Ginger will eat a a pizza everyday of the week = 8/10

6 0
3 years ago
Read 2 more answers
What is the solution to the system of equations? y=−2x−64x−y=−36 (−15, 24) (−7, 8) (−5, 4) I don't know.
jeyben [28]

Answer:

Step-by-step explanation:

the solution is  x+2y - 3z =15. 2x – 2z=6 x = 3. 2/3)-22=6.

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is function?write one example
    15·1 answer
  • Coach Jericho recorded the number of shots made by the starters on the 6th grade and 8th grade boys’ basketball team during the
    15·1 answer
  • The answers sis i need help
    5·1 answer
  • An airplane takes off at an angle of 75° from its starting point. When the plane has traveled a total distance of 600 feet, its
    5·2 answers
  • A human resource manager for a large company takes a random sample of 60 employees from the company database. Based on the sampl
    8·1 answer
  • the average length of a female white pink dolphin is about 111 inches what is the length in feet and inches
    7·2 answers
  • 6x – 4 &lt; –34 or 3x + 10 &gt; 10
    11·2 answers
  • 2. Lillie's grandmother is making potato salad for a family reunion. She uses three
    9·1 answer
  • 6th grade math i mark as brainliest​
    6·1 answer
  • Expand the expression 3(-2a+3b)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!