Answer:
equiangular -right -obtuse -acute.
Answer:
The probability that the pirate misses the captain's ship but the captain hits = 0.514
Step-by-step explanation:
Let A be the event that the captain hits the pirate ship
The probability of the captain hitting the pirate ship, P(A) = 3/5
Let B be the event that the pirate hits the captain's ship
The probability of the pirate hitting the captain's ship P(B) = 1/7
The probability of the pirate missing the captain's ship, P'(B) = 1 - P(B)
P'(B) = 1 - 1/7 = 6/7
The probability that the pirate misses the captain's ship but the captain hits = P(A) * P(B) = 3/5 * 6/7
= 0.514
The volume of the cube is 54.87 but rounded to the nearest tenth is 54.9
The exact volume of the cylinder is 1770.28 but rounded is 1770.29 and the approximate volume of the cylinder is 1769.36
There 7 blocks of hundreds which means each such block is equivalent to 100.
There are 5 blocks of tens, which means each such block is equivalent to 10.
There are 8 blocks of ones, which means each such block is equivalent to 1.
The total of these blocks will be = 7(100) + 5(10) + 8(10) = 758
We can make several two 3-digit numbers from these blocks. An example is listed below:
Example:
Using 3 hundred block, 2 tens blocks and 4 ones block to make one number and remaining blocks to make the other number. The remaining blocks will be 4 hundred blocks, 3 tens blocks and 4 ones blocks
The two numbers we will make in this case are:
1st number = 3(100) + 2(10) + 4(1) = 324
2nd number = 4(100) + 3(10) + 4(1) = 434
The sum of these two numbers is = 324 + 434 = 758
i.e. equal to the original sum of all blocks.
This way changing the number of blocks in each place value, different 3 digit numbers can be generated.
I know how to but i don't know how to reply with a picture