The value of n in given proportion is 16
<u><em>Solution:</em></u>
We have to find the value of "n" in the proportion
<em><u>Given proportion is:</u></em>
<em><u></u></em>
<em><u></u></em>
We can solve the above proportion by cross-multiplying
Multiply the numerator of the left-hand fraction by the denominator of the right-hand fraction
Multiply the numerator of the right-hand fraction by the denominator of the left-hand fraction
Set the two products equal to each other
Solve for the variable




Thus the value of n in given proportion is 16
Check the picture below.
so the rhombus has the diagonals of AC and BD, now keeping in mind that the diagonals bisect each, namely they cut each other in two equal halves, let's find the length of each.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ A(\stackrel{x_1}{-4}~,~\stackrel{y_1}{-2})\qquad C(\stackrel{x_2}{6}~,~\stackrel{y_2}{8})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ AC=\sqrt{[6-(-4)]^2+[8-(-2)]^2}\implies AC=\sqrt{(6+4)^2+(8+2)^2} \\\\\\ AC=\sqrt{10^2+10^2}\implies AC=\sqrt{10^2(2)}\implies \boxed{AC=10\sqrt{2}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AA%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B-2%7D%29%5Cqquad%20%0AC%28%5Cstackrel%7Bx_2%7D%7B6%7D~%2C~%5Cstackrel%7By_2%7D%7B8%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B%5B6-%28-4%29%5D%5E2%2B%5B8-%28-2%29%5D%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B%286%2B4%29%5E2%2B%288%2B2%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAC%3D%5Csqrt%7B10%5E2%2B10%5E2%7D%5Cimplies%20AC%3D%5Csqrt%7B10%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BAC%3D10%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ B(\stackrel{x_1}{-2}~,~\stackrel{y_1}{6})\qquad D(\stackrel{x_2}{4}~,~\stackrel{y_2}{0})\qquad \qquad BD=\sqrt{[4-(-2)]^2+[0-6]^2} \\\\\\ BD=\sqrt{(4+2)^2+(-6)^2}\implies BD=\sqrt{6^2+6^2} \\\\\\ BD=\sqrt{6^2(2)}\implies \boxed{BD=6\sqrt{2}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AB%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%0AD%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B0%7D%29%5Cqquad%20%5Cqquad%20BD%3D%5Csqrt%7B%5B4-%28-2%29%5D%5E2%2B%5B0-6%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B%284%2B2%29%5E2%2B%28-6%29%5E2%7D%5Cimplies%20BD%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABD%3D%5Csqrt%7B6%5E2%282%29%7D%5Cimplies%20%5Cboxed%7BBD%3D6%5Csqrt%7B2%7D%7D)
that simply means that each triangle has a side that is half of 10√2 and another side that's half of 6√2.
namely, each triangle has a "base" of 3√2, and a "height" of 5√2, keeping in mind that all triangles are congruent, then their area is,
Answer:
V ≈ 527.79
Step-by-step explanation:
Formula is V= πr2h
therefore
V = π * 4 * 2 * 10.5
V = π * 8 * 10.5
V ≈ 527.79
There is no list and no choices given.
The solutions of | x | = 10 are x = 10 and x = -10 .
All (both) solutions happen to be integers.
There are no other solutions.
Answer:
-5n²-8n+4
Step-by-step explanation:
Remove Parentheses :
3n²-5n+6 - 8n²-3n-2
Collect/Combine Like terms:
(3n²-8n²) + (-5n-3n) +(6-2)
Simplify:
-5n²-8n+4