1) Write the balaced chemical equation:
H2 + 2O2 → 2H2O
2) Infere the molar ratios:
1 mol H2 : 2 mol of water
3) Make the calculus as the direct proportion relation:
[2 mol H2O] / [1 mol H2] * 7 mol H2 = 14 mol H2
As you see you produce the double number of moles of H2O than number of moles of H2 used.
Answer: 14 moles
<span>The superscripts in an electron configuration represents the number of electrons and protons in an element. </span>
Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O
Hey Madoudou
The correct answer is option B (sulfate)
The reason is because "Sulfate" has a negative sign.
In order for it to be a cation, it must have positive sign such as "iron(lll)ion
I hope this helps~
$724.73 this would be the answer because if you subtract 320.50 and 86.10 from the 1056.33 then add 75 you get 724.73