Answer:
0.2 i think
Step-by-step explanation:
Answer: The mode is: 3 . The range is: 6 .
___________________________________
Explanation:
___________________________________
It would be best to list this values in the data set given, from least to greatest:
________________________________________________
{ 3, 3, 3, 3, 4, 5, 5, 6, 9 } .
________________________________________________
The mode is the number that occurs most frequently in the data set, which is: "3".
_________________________________________________________
{The number, "3", occurs FOUR (4) times. The number, "4", occurs ONE (1) time. The number, "5", occurs TWO (2) times. The number, "6", occurs ONE (1) time. The number, "9", occurs ONE (1) time.}.
___________________________________________________
The range is calculated from subtracting the LOWEST value in the data set FROM the HIGHEST value in the data set.
____________________________________________________
The lowest values in the data set is: "3" .
The highest value in the data set is: "9" .
________________________________________________
To calculate the range: 9 <span>− 3 = 6 . The range is: "6".
</span>________________________________________________
Answer: The mode is: 3 . The range is: 6 .
_________________________________________________
Answer:
- 2. Rotate the triangle 90º clockwise about the origin and then translate it 10 units left and 9 units down.
Step-by-step explanation:
- <em>Easy way to take one of the vertices and apply the transformations</em>
1. Rotate the triangle 90º counterclockwise about the origin and then translate it 10 units left and 9 units down.
2. Rotate the triangle 90º clockwise about the origin and then translate it 10 units left and 9 units down.
- True
- (-3, 3) → (3, 3) → (3 - 10, 3 - 9) = (-7, -6)
3. Rotate the triangle 90º counterclockwise about the origin then translate it 1 unit up.
4. Rotate the triangle 90º clockwise about the origin then translate it 1 unit up.
We know that
<span>Figures can be proven similar if one, or more, similarity transformations (reflections, translations, rotations, dilations) can be found that map one figure onto another.
In this problem to prove circle 1 and circle 2 are similar, a translation and a scale factor (from a dilation) will be found to map one circle onto another.
</span>we have that
<span>Circle 1 is centered at (4,3) and has a radius of 5 centimeters
</span><span> Circle 2 is centered at (6,-2) and has a radius of 15 centimeters
</span>
step 1
<span>Move the center of the circle 1 onto the center of the circle 2
</span>the transformation has the following rule
(x,y)--------> (x+2,y-5)
so
(4,3)------> (4+2,3-5)-----> (6,-2)
so
center circle 1 is now equal to center circle 2
<span>The circles are now concentric (they have the same center)
</span>
step 2
A dilation is needed to increase the size of circle 1<span> to coincide with circle 2
</span>
scale factor=radius circle 2/radius circle 1-----> 15/5----> 3
radius circle 1 will be=5*scale factor-----> 5*3-----> 15 cm
radius circle 1 is now equal to radius circle 2
A translation, followed by a dilation<span> will map one circle onto the other, thus proving that the circles are similar</span>