According to Google:
In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function in one or more variables in which the highest-degree term is of the second degree.
If this is a homework question, just paraphrase!
Answer with explanation:
1. The given equations are
3x -5 y=2
-x+2 y= 0
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{cc}3&-5\\-1&2\end{array}\right] ,\\\\ X=\left[\begin{array}{c}x&y\end{array}\right],\\\\B=\left[\begin{array}{c}2&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%26-5%5C%5C-1%262%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%2C%5C%5C%5C%5CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D)

Adj.A=Transpose of cofactor of Matrix A
![Adj.A=\left[\begin{array}{cc}2&1\\5&3\end{array}\right] ,\\\\ |A|=6-5\\\\|A|=1\\\\\left[\begin{array}{c}x&y\end{array}\right]=\left[\begin{array}{cc}2&5\\1&3\end{array}\right] \times \left[\begin{array}{c}2&0\end{array}\right]\\\\x=4, y=2](https://tex.z-dn.net/?f=Adj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%261%5C%5C5%263%5Cend%7Barray%7D%5Cright%5D%20%2C%5C%5C%5C%5C%20%7CA%7C%3D6-5%5C%5C%5C%5C%7CA%7C%3D1%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%265%5C%5C1%263%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D4%2C%20y%3D2)
2.
The given equations are
x+y-z=2
x+z=7
2 x +y+z=13
⇒The matrix in the form of , AX=B, is
![A=\left[\begin{array}{ccc}1&1&-1\\1&0&1\\2&1&1\end{array}\right]\\\\ X=\left[\begin{array}{ccc}x\\y\\z\end{array}\right]\\\\B= \left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\\rightarrow X=A^{-1}B\\\\\rightarrow X=\frac{Adj.A}{|A|}\times B\\\\a_{11}=-1,a_{12}=1,a_{13}=1,a_{21}=-2,a_{22}=3,a_{23}=1,a_{31}=1,a_{32}=-2,a_{33}=-1\\\\|A|=1\times(0-1)-1\times(1-2)-1\times(1-0)\\\\=-1+1-1\\\\|A|=-1\\\\Adj.A=\left[\begin{array}{ccc}-1&-2&1\\1&3&-2\\1&1&-1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%26-1%5C%5C1%260%261%5C%5C2%261%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%20X%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C%5Crightarrow%20X%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Crightarrow%20X%3D%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%5Ctimes%20B%5C%5C%5C%5Ca_%7B11%7D%3D-1%2Ca_%7B12%7D%3D1%2Ca_%7B13%7D%3D1%2Ca_%7B21%7D%3D-2%2Ca_%7B22%7D%3D3%2Ca_%7B23%7D%3D1%2Ca_%7B31%7D%3D1%2Ca_%7B32%7D%3D-2%2Ca_%7B33%7D%3D-1%5C%5C%5C%5C%7CA%7C%3D1%5Ctimes%280-1%29-1%5Ctimes%281-2%29-1%5Ctimes%281-0%29%5C%5C%5C%5C%3D-1%2B1-1%5C%5C%5C%5C%7CA%7C%3D-1%5C%5C%5C%5CAdj.A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-1%26-2%261%5C%5C1%263%26-2%5C%5C1%261%26-1%5Cend%7Barray%7D%5Cright%5D)
![\frac{Adj.A}{|A|}=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\\\\X=A^{-1}B\\\\\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}1&2&-1\\-1&-3&2\\-1&-1&1\end{array}\right]\times\left[\begin{array}{ccc}2\\7\\13\end{array}\right]\\\\x=3,y=3,z=4](https://tex.z-dn.net/?f=%5Cfrac%7BAdj.A%7D%7B%7CA%7C%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CX%3DA%5E%7B-1%7DB%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%26-1%5C%5C-1%26-3%262%5C%5C-1%26-1%261%5Cend%7Barray%7D%5Cright%5D%5Ctimes%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C7%5C%5C13%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5Cx%3D3%2Cy%3D3%2Cz%3D4)
Answer:
Huw spends £48 on his social life
The perimeter is just all the lines around the outside of the shape so basically take all the numbers and add them together to get the answer
Answer:
3x^10 + x^6 + 2x^2 - 4x + 8
Step-by-step explanation:
In descending order by powers of x: 3x^10 + x^6 + 2x^2 - 4x + 8