Answer:
A normal distribution or z-test is used to construct a confidence interval.
Step-by-step explanation:
We are given the following in the question:
Sample mean,
= $3120
Sample size, n = 40
Population standard deviation, σ = $677
The distribution of earnings of college is a normal distribution.
Conditions:
- Since we are given the population standard deviation and the the sample size is also greater than 30.
Conclusion:
Thus, we use a normal distribution or z-test to construct a confidence interval.
I hope the choices for the numerators of the solutions are given.
I am showing the complete work to find the solutions of this equation , it will help you to find an answer of your question based on this solution.
The standard form of a quadratic equation is :
ax² + bx + c = 0
And the quadratic formula is:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
So, first step is to compare the given equation with the above equation to get the value of a, b and c.
So, a = 10, b = -19 and c = 6.
Next step is to plug in these values in the above formula. Therefore,




So, 

So, 
Hope this helps you!
Answer:
The answers are given below.
Step-by-step explanation:
The computation is shown below:
1.a.
Profit Margin = Net Income ÷ Sales × 100
= $374 ÷ $6,900 ×100
= 5.4%
1-b:
Average Assets = (Beginning Assets + Ending Assets) ÷ 2
= ($3,200 + $3,600) ÷ 2
= $3,400
Now
Return on Assets = Net Income ÷ Average Assets
= $374 ÷ $3,400
= 11%
1-c
Average Equity = ($700 + $700 + $320 + $270) ÷ 2
= $995
Now
Return on Equity = Net Income ÷ Average Equity *100
= $374 ÷ $995
= 37.59%
2:
Dividends Paid = Beginning Retained Earnings + Net Income – Ending Retained Earnings
= $270 + $374 - $320
= $324