An oxygen gas is a diatomic molecule which means that each molecule is composed of 2 atoms. Its symbol is O2.
Each oxygen atom has a molar mass of 16 g/mol. The molar mass of oxygen gas is calculated below,
molar mass = 2 x (16 g/mol) = 32 g/mol
To determine the number of moles in 52.5 grams of oxygen, divide the given mass by the calculated molar mass.
n = 52.5 grams / (32 gram/ mol)
n = 1.64 moles
Thus, there are 1.64 moles of oxygen gas.
Answer: mmmmmm asking for mrs.howard work I see lol good luck grace
Explanation:
<h2>Collision Theory
</h2>
Explanation:
<h3>
The given statement is related to the collision theory -
</h3>
Collision theory was given by William Lewis in 1916.
This theory explains in a qualitative manner that in what way any chemical reaction occurs and the reason for the different reaction rates for different reactions.
<h3>
According to the collision theory -
</h3>
- Molecules must collide in order to react
- Sufficient amount of energy is needed for collisions (kinetic energy) so that the chemical bonds should break
- This energy used is known as the activation energy
- On the increase in the temperature, the kinetic energy of the molecule increases and the molecules move faster and collide with a proper orientation at an increased speed
- This increases the rate of a collision that in turn increases the breaking of the bond
Answer:
There are typically three ways that it is accomplished: use of erythropoietin (EPO) or synthetic oxygen carriers and blood transfusions. While transfusions of large volumes of blood or use of EPO can be detected, microdosing EPO or transfusing smaller volumes of packed red blood cells is much harder to detect.