Answer:
4 moles of NH3 will be produced
Explanation:
The reaction expression is given as:
N₂ + 3H₂ → 2NH₃
We have to check that the equation of the reaction is balanced.
Then;
if 2 mole of N₂ reacts;
1 mole of N₂ will react with 3 mole of H₂ to produce 2 mole of NH₃
2 mole of N₂ will react with (2x3)mole of H₂ to produce (2x2)mole of NH₃
6mole of H₂ to produce 4 mole of NH₃
Answer:
Top-Toluene
Middle-Water
Bottom-Chloroform
Explication:
Chloroform is on the bottom layer because it is the densest liquid.
Toluene is on the top because it is the least dense.
Water is between the two because it’s density is between chloroform and toluene.
I would say it’s helps with basic reproduction and let’s animals develop more.
The Mass of oxygen in isolated sample is 8.6 g
<h3>What is the
Law of Constant composition?</h3>
The law of constant composition states that pure samples of the same compound contain the same element in the same ratio by mass irrespective of the source from which the compound is obtained.
Considering the given ascorbic acid samples:
Laboratory sample contains 1.50 gg of carbon and 2.00 gg of oxygen
mass ratio of oxygen to carbon is 2 : 1.5
Isolated sample will contain 2/1.5 * 6.45 g of oxygen.
Mass of oxygen in isolated sample = 8.6 g
In conclusion, the mass of oxygen is determined from the mass ratio of oxygen and carbon in the compound.
Learn more about the Law of Constant composition at: brainly.com/question/1557481
#SPJ1
Note that the complete question is given below:
A sample of ascorbic acid (vitamin C) is synthesized in the laboratory. It contains 1.50 g of carbon and 2.00 g of oxygen. Another sample of ascorbic acid isolated from citrus fruits contains 6.45 gg of carbon. According to the law of constant composition, how many grams of oxygen does this isolated sample contain?
Express the answer in grams to three significant figures.
8.47 g
Answer:
so 0.15 moles X 22.4 dm3/mole=3.36 dm3. Next we find the moles of hexane combusted, and then the moles of CO2. Finally, we find the volume of CO2 using the fact that at STP, 1 mole of gas = 22.4 dm3.