Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
Point (11, 4) → x₁ = 11, y₁ = 4
Point (5, 8) → x₂ = 5, y₂ = 8
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Subtract:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Simplify:

Answer:
Horizontal asymptote of the graph of the function f(x) = (8x^3+2)/(2x^3+x) is at y=4
Step-by-step explanation:
I attached the graph of the function.
Graphically, it can be seen that the horizontal asymptote of the graph of the function is at y=4. There is also a <em>vertical </em>asymptote at x=0
When denominator's degree (3) is the same as the nominator's degree (3) then the horizontal asymptote is at (numerator's leading coefficient (8) divided by denominator's lading coefficient (2)) 
Answer:
umm... there is no problem
G>=5, so anything above or equal to 5 would count. So, you could use 5, 6, 7.
Answer:
(8x-9)(8x+9)
Step-by-step explanation:
64x^2 - 81
Rewriting
(8x)^2 - 9^2
We recognize that this is the difference of squares
a^2 - b^2 = (a-b)(a+b)
(8x-9)(8x+9)