x=8 is the answer fellow user
Answer:
See the proof below.
Step-by-step explanation:
Assuming this complete question: "For each given p, let Z have a binomial distribution with parameters p and N. Suppose that N is itself binomially distributed with parameters q and M. Formulate Z as a random sum and show that Z has a binomial distribution with parameters pq and M."
Solution to the problem
For this case we can assume that we have N independent variables with the following distribution:
bernoulli on this case with probability of success p, and all the N variables are independent distributed. We can define the random variable Z like this:
From the info given we know that
We need to proof that by the definition of binomial random variable then we need to show that:
The deduction is based on the definition of independent random variables, we can do this:
And for the variance of Z we can do this:
And if we take common factor we got:
And as we can see then we can conclude that
responder: 8,75
Cada dimensión será de 8,75 porque si la longitud es de 25 m de largo y el ancho es 10, si los sumamos y obtendremos 35. Así que 35 dividido entre 4 es 8,75
Normally when dealing with coins the probability of getting heads or tails is 0.5 each. However in this case since its an unfair coin, the probability of getting heads is 0.2.
H - head
T - tails
R - red marble
pr (H) = 0.2
urn
6 red and 4 blue
pr (T) = 0.8
urn
3 red and 5 blue
when heads is obtained
red - 6/10 -0.6
blue - 4/10 - 0.4
therefore when multiplying with 0.2 probability of getting heads
pr (R ∩ H) red - 0.6*0.2 = 0.12
when tails is obtained
red - 3/8 - 0.375
blue - 5/8 - 0.625
when multiplying with 0.8 probability of getting tails
pr (R ∩ T) red - 0.375 * 0.8 = 0.3
using bayes rule the answer can be found out,
the following equation is used;
pr (H | R) = pr (R ∩ H) / {pr (R ∩ H) + pr (R ∩ T)}
= 0.12 / (0.12 + 0.3)
= 0.12 / 0.42
= 0.286
the final answer is 0.286