1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
3 years ago
13

An oscillating mechanism has a maximum displacement of 3.2m and a frequency of 50Hz. At timet-0 the displacement is 150cm. Expre

ss the displacement in the general form Asin(wt + α).
Engineering
1 answer:
Helen [10]3 years ago
6 0

Given:

max displacement, A = 3.2 m

f= 50 Hz

at t = 0, displacement, d = 150 cm = 1.5 m

Solution:

Displacement in the general form is represented by:

d = Asin(ωt ± α)

d = 3.2sin(2πft ± α)

d = 3.2sin(100πt ± α)                    

where,

A = 3.2 m,            

ω = 2πf = 100π

Now,

at t = 0,

1.5 = 3.2sin(100π(0) ± α )

1.5 = 3.2sinα

sin α = \frac{1.5}{3.2} = 0.4687

α = sin^{-1}(0.46875) = 27.95° = 0.488 radian

Now, we can express displacement in the form of 'Asin(wt + α)' as:

d = 3.2sin(100πt ± 0.488 )

You might be interested in
What is the answer to life the universe and everything <br> (worth 95 points!)
taurus [48]
I would say nothing, time is endless and the cycle of life is endless, not only on earth but almost anywhere, people try to find answers like what’s at the bottom of the ocean and stuff like that but there’s no point in finding out because it has no benefit, life is made for different reasons so there’s not one answer to it
5 0
3 years ago
Read 2 more answers
For an automotive spark-ignition engine, the combustion duration (from time of ignition through completion) is approximately one
Trava [24]

Answer:

1.72

Explanation:

Given that:

Engine speed = 600 rev/min

Crankshaft speed = 3000 rev/min

The mass rate must increase by a factor of 1.72 compared to the rate of conversion at 600 rev/min

5 0
3 years ago
An electrical current of 700 A flows through a stainlesssteel cable having a diameter of 5 mm and an electricalresistance of 610
KatRina [158]

Answer:

778.4°C

Explanation:

I = 700

R = 6x10⁻⁴

we first calculate the rate of heat that is being transferred by the current

q = I²R

q = 700²(6x10⁻⁴)

= 490000x0.0006

= 294 W/M

we calculate the surface temperature

Ts = T∞ + \frac{q}{h\pi Di}

Ts = 30+\frac{294}{25*\frac{22}{7}*\frac{5}{1000}  }

Ts=30+\frac{294}{0.3928} \\

Ts =30+748.4\\Ts = 778.4

The surface temperature is therefore 778.4°C if the cable is bare

6 0
3 years ago
The arrival rate at a parking lot is 6 veh.min. Vehicles start arriving at 6:00PM and when the queue reaches 36 vehicles, servic
seraphim [82]

Answer:

Departure rate = 7.65 vehicle/min

Explanation:

See the attached file for the calculation.

5 0
3 years ago
A 75 ohm coaxial transmission line has a length of 2.0 cm and is terminated with a load impedance of 37.5 + j75 Ohm. If the diel
Hatshy [7]

Answer:

The load reflection coefficient, \Gamma =0.62\angle 82.875^{\circ} \Omega

Reflection coefficient at input,  \Gamma = 0.62\angle - 147.518^{\circ} \Omega

SWR = 4.26

Given:

Characteristic impedance of the co-axial cable, Z_{c} = 75 \Omega

Length of the cable, L = 2.0 cm = 0.02 m

Z_{Load} = 37.5 + j75 \Omega

Dielectric constant, K = 2.56

frequency, f = 3.0 GHz = 3.0 \times 10^{9} Hz

Explanation:

In order to calculate the reflection coefficient at load, we first calculate these:

The line input impedance Z_{i} is given by:

Z_{i} = Z_{c}\frac{Z_{Load} + jZ_{c} tan(\beta L)}{Z_{c} + jZ_{Load} tan (\beat L)}                     (1)

Now, we calculate the value of \beta:

\beta = \frac{2\pi}{\lambda'} = \farc{2\pi f\sqrt{K}}{c}

(since, \lambda' = \farc{c}{f\sqrt{K}})

\beta = \farc{2\pi f\sqrt{2.56}}{3\times 10^{8}} = 100.53

Now, Substituting the value in eqn (1):

Z_{i} = 75\frac{37.5 + j75 + j75 tan(100.53\times 0.02)}{75 + j(37.5 + j75) tan ( 100.53\times 0.02)} = 18.99 - j20.55 \Omega = 27.98\angle - 47.257^{\circ} \Omega    

Now, the load reflection coefficient is given by:

\Gamma = \frac{Z_{Load} - Z_{c}}{Z_{c} + Z_{Load}}}

Thus

\Gamma = \frac{37.5 + j75 - 75}{75 + 37.5 + j75}} = 0.077 + j0.615 = 0.62\angle 82.875^{\circ} \Omega

Similarly,

Reflection coefficient at input:

\Gamma' = \frac{Z_{i} - Z_{c}}{Z_{c} + Z_{i}}}

\Gamma' = \frac{18.99 - j20.55 - 75}{75 + 18.99 - j20.55}} = - 0.523 - j0.334 = 0.62\angle - 147.518^{\circ} \Omega

Now, the SWR is given by:

SWR, Standing Wave Ratio = \frac{1 +|\Gamma|}{1 - |\Gamma|}

SWR = \frac{1 +|0.62|}{1 - |0.62|} = 4.26

8 0
3 years ago
Other questions:
  • A trapezoidal ditch is designed with a bottom width of 3 space f t and side slopes of m equals 1 on both sides. The channel is m
    9·1 answer
  • In a hydroelectric power plant, water enters the turbine nozzles at 780 kPa absolute with a low velocity. If the nozzle outlets
    11·1 answer
  • Give the general layout of centrifugal pump.​
    13·1 answer
  • A 10-mm steel drill rod was heat-treated and ground. The measured hardness was found to be 290 Brinell. Estimate the endurance s
    14·1 answer
  • Sam promises to pay Sandy $2,000 in four years and another $3,000 four years later for a loan of $2,000 from Sandy today. What i
    8·1 answer
  • Which type of fires should you fight with a portable fire<br> extinguisher?
    8·1 answer
  • What objects have openings that allow liquids to pass through them.
    7·2 answers
  • How should you move your board through the planer? (Pick two choices.)
    8·1 answer
  • Compute the theoretical density of ZnS given that the Zn-S distance and bond angle are 0.234 nm and 109.5o, respectively. The at
    6·1 answer
  • Which of the following explains why truck drivers are required to take a rest period after a certain period of driving?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!