1 liter = .264 gallon
1 km = .621 mile
this means that 58.3km/L is equal to 137.13mpg
so
500/137.13 = 3.65 gallons of gas
3.65 x 3.5 = $12.78
Answer:
the base-emitter junction is open and the emitter resistor is open
Explanation:
Because here there will be no base current only when the the base emitter junction is kept open and. Also when emitter resistor is kept open or with thus there will be no voltage drop across the Resistor meaning the base voltage Will be equal to that in the voltage divider circuitry
Answer:
i) σ1 = 133.5 MPa
σ2 = -2427 MPa
ii) 78.89 MPa
Explanation:
Given data:
ε1 = 0.0020 and ε2 = –0.0010
E = 71 GPa
v = 0.35
<u>i) Determine the biaxial stresses σ1 and σ2 using the relations below</u>
ε1 = σ1 / E - v (σ2 / E) -----( 1 )
ε2 = σ2 / E - v (σ1 / E) -------( 2 )
resolving equations 1 and 2
σ1 = E / 1 - v^2 { ε1 + vε2 } ---- ( 3 )
σ2 = E / 1 - v^2 { ε2 + vε1 } ----- ( 4 )
input the given data into equation 3 and equation 4
σ1 = 133.5 MPa
σ2 = -2427 MPa
<u>ii) Calculate the value of the maximum shear stress ( Zmax )</u>
Zmax = ( σ1 - σ2 ) / 2
= 133.5 - ( - 2427 ) / 2
= 78.89 MPa
Answer:
The original length of the specimen is found to be 76.093 mm.
Explanation:
From the conservation of mass principal, we know that the volume of the specimen must remain constant. Therefore, comparing the volumes of both initial and final state as state 1 and state 2:
Initial Volume = Final Volume
πd1²L1/4 = πd2²L2/4
d1²L1 = d2²L2
L1 = d2²L2/d1²
where,
d1 = initial diameter = 19.636 mm
d2 = final diameter = 19.661 mm
L1 = Initial Length = Original Length = ?
L2 = Final Length = 75.9 mm
Therefore, using values:
L1 = (19.661 mm)²(75.9 mm)/(19.636 mm)²
<u>L1 = 76.093 mm</u>