<span>In physics, the law of conservation of energy states that the total energy of an isolated system remains constant—it is said to be conserved over time. Energy can neither be created nor destroyed; rather, it transforms from one form to another.</span>
Answer:
Purple flowers
Explanation:
Usually the dominant allele is a capital letter.
From the question, purple flowers are dominant to white flowers while white are recessive.
PP = Purple
pp = White
The question is incomplete, here is the complete question:
The rate of certain reaction is given by the following rate law:
![rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=rate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
At a certain concentration of ![H_2 and [tex]I_2, the initial rate of reaction is 0.120 M/s. What would the initial rate of the reaction be if the concentration of [tex]H_2 were halved.Answer : The initial rate of the reaction will be, 0.03 M/sExplanation :Rate law expression for the reaction:[tex]rate=k[H_2]^2[NH_3]](https://tex.z-dn.net/?f=H_2%20and%20%5Btex%5DI_2%2C%20the%20initial%20rate%20of%20reaction%20is%200.120%20M%2Fs.%20What%20would%20the%20initial%20rate%20of%20the%20reaction%20be%20if%20the%20concentration%20of%20%5Btex%5DH_2%20were%20halved.%3C%2Fp%3E%3Cp%3E%3Cstrong%3EAnswer%20%3A%20The%20initial%20rate%20of%20the%20reaction%20will%20be%2C%200.03%20M%2Fs%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%20%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%3Cstrong%3ERate%20law%20expression%20for%20the%20reaction%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%5Btex%5Drate%3Dk%5BH_2%5D%5E2%5BNH_3%5D)
As we are given that:
Initial rate = 0.120 M/s
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Dividing 2 by 1, we get:
![\frac{R}{0.120}=\frac{k(\frac{[H_2]}{2})^2[NH_3]}{k[H_2]^2[NH_3]}](https://tex.z-dn.net/?f=%5Cfrac%7BR%7D%7B0.120%7D%3D%5Cfrac%7Bk%28%5Cfrac%7B%5BH_2%5D%7D%7B2%7D%29%5E2%5BNH_3%5D%7D%7Bk%5BH_2%5D%5E2%5BNH_3%5D%7D)


Therefore, the initial rate of the reaction will be, 0.03 M/s
Answer:
Molecular formula of aniline is C6H5NH2.
Explanation:
As we know, molecular mass can be calculated as
Molar mass = C6H5NH2
Molar mass = (6*12)+(1*7)+(28)
Molar mass = 93 g/mol