Answer:
2445 L
Explanation:
Given:
Pressure = 1.60 atm
Temperature = 298 K
Volume = ?
n = 160 mol
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 08206 L.atm/K.mol
Applying the equation as:
1.60 atm × V = 160 mol × 0.08206 L.atm/K.mol × 298 K
<u>⇒V = 2445.39 L</u>
Answer to four significant digits, Volume = 2445 L
The formula for kinetic energy is KE=1/2(mv²). Since both mass and velocity are multiplied by each other, particle with a larger mass needs to be moving slower than a particle with less mass if both have the same kinetic energy. You can think of it as 2KE/m=v² or 2KE/v²=m, If you increase the mass the velocity needs to decrease to keep the same KE value.
I hope this helps. Let me know in the comments if anything is unclear.
To find this, we will use this formula:
Molar mass of element
------------------------------------ x 100
Molar mass of compound
So, first lets calculate the mass of the compound as a whole. We use the atomic masses on the periodic table to determine this.
Ca: 40.078 g/mol
N2 (there is two nitrogens): 28.014 g/mol
O6 (there are six nitrogens: 3 times 2): 95.994 g/mol
When we add all of those numbers up together, we get 164.086. That is the molar mass for the whole compound. However, we are trying to figure out what percent of the compound oxygen makes up. From the molar mass, we know that 95.994 of the 164.086 is oxygen. Lets plug those numbers into our equation!
95.994
-----------
164.086
When we divide those two numbers, we get .585. When we multiply that by 100, we get 58.5.
So, the percent compostition of oxygen in Ca(NO3)2, or, calcium nitrate, is 58.5%.
Answer:
I would help but the picture will not load for me :(
Explanation: