Round all dollar values to the nearest cent, and consider the trade-in to be a reduction in the amount paid
b.
$38,821
Answer:
3n^2+9+5n^4+55n
Step-by-step explanation:
Steps
$\left(3n^2+9+5n^4-3n\right)+\left(-9n\left(-7\right)-5n\right)$
$\mathrm{Remove\:parentheses}:\quad\left(a\right)=a,\:-\left(-a\right)=a$
$=3n^2+9+5n^4-3n+9n\cdot\:7-5n$
$\mathrm{Add\:similar\:elements:}\:-3n-5n=-8n$
$=3n^2+9+5n^4-8n+9\cdot\:7n$
$\mathrm{Multiply\:the\:numbers:}\:9\cdot\:7=63$
$=3n^2+9+5n^4-8n+63n$
$\mathrm{Add\:similar\:elements:}\:-8n+63n=55n$
$=3n^2+9+5n^4+55n$
Answer:
18" X 18" X 36"
Step-by-step explanation:
Given a square base container of height h, let a side of the base =s
The volume of the container,
If the sum of its height and girth (the perimeter of its base) equals 108 in

Substituting h=108-4s into V

We are required to determine the maximum volume of such container, first we take the derivative:

Optimizing:

Recall that: h = 108-4s

The dimensions of the carton are 18" X 18" X 36".
Answer:
<h3> Perimeter = 3√5 + 6 + √73 + √58 + 5√2</h3>
Step-by-step explanation:

Answer:
-4 <x< -2
Step-by-step explanation:
you need to plot the line between -4 and -2