Answer:
Future value of annuity (FV) = $13,782.12 (Approx)
Step-by-step explanation:
Given:
Periodic payment p = $500
Interest rate r = 13% = 13%/4 = 0.0325 (Quarterly)
Number of period n = 5 x 4 = 20 quarter
Find:
Future value of annuity (FV)
Computation:
![Future\ value\ of\ annuity\ (FV)=p[\frac{(1+r)^n-1}{r} ] \\\\Future\ value\ of\ annuity\ (FV)=500[\frac{(1+0.0325)^{20}-1}{0.0325} ] \\\\Future\ value\ of\ annuity\ (FV)=13,782.1219 \\\\](https://tex.z-dn.net/?f=Future%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3Dp%5B%5Cfrac%7B%281%2Br%29%5En-1%7D%7Br%7D%20%5D%20%5C%5C%5C%5CFuture%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3D500%5B%5Cfrac%7B%281%2B0.0325%29%5E%7B20%7D-1%7D%7B0.0325%7D%20%5D%20%5C%5C%5C%5CFuture%5C%20value%5C%20of%5C%20annuity%5C%20%28FV%29%3D13%2C782.1219%20%5C%5C%5C%5C)
Future value of annuity (FV) = $13,782.12 (Approx)
The containers must be spheres of radius = 6.2cm
<h3>
How to minimize the surface area for the containers?</h3>
We know that the shape that minimizes the area for a fixed volume is the sphere.
Here, we want to get spheres of a volume of 1 liter. Where:
1 L = 1000 cm³
And remember that the volume of a sphere of radius R is:

Then we must solve:
![V = \frac{4}{3}*3.14*R^3 = 1000cm^3\\\\R =\sqrt[3]{ (1000cm^3*\frac{3}{4*3.14} )} = 6.2cm](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%2A3.14%2AR%5E3%20%3D%201000cm%5E3%5C%5C%5C%5CR%20%3D%5Csqrt%5B3%5D%7B%20%20%281000cm%5E3%2A%5Cfrac%7B3%7D%7B4%2A3.14%7D%20%29%7D%20%3D%206.2cm)
The containers must be spheres of radius = 6.2cm
If you want to learn more about volume:
brainly.com/question/1972490
#SPJ1
54 because there are 12 inches in a foot 12 divided by 3 is 4 and 6 divided by 3 is 2. Add the 2 and 4 and multiply that by 9
Answer:3/3 would be your slope
Step-by-step explanation: