Given
R is the interior of ∠ TUV.
m∠ RUV=30degrees, m∠ TUV=3x+16, and m∠ TUR=x+10.
Find the value of x and the m ∠TUV.
To proof
As given in the question
m ∠TUV=3x+16, and m ∠TUR=x+10
thus
m∠ RUV = m∠ TUV - m∠ TUR
= 3x + 16 - x -10
= 2x + 6
As given
m ∠RUV=30°
compare both the values
we get
30 = 2x + 6
24 = 2x
12 = x
put this value in the m ∠TUV= 3x+16
m ∠TUV= 12× 3 +16
= 52°
Hence proved
<span>x^2 - 12x - 45
= (x - 15) (x + 3) .........</span><span>factored form</span>
Answer:
The value of P(AUB) = 0.438
Step-by-step explanation:
Given:
P(A) = 0.36
P(B) = 0.2
P(A∩B) = 0.122
Find:
The value of P(AUB)
Computation:
P(AUB) = P(A) + P(B) - P(A∩B)
The value of P(AUB) = 0.36 + 0.2 - 0.122
The value of P(AUB) = 0.56 - 0.122
The value of P(AUB) = 0.438