Answer: Well!
Explanation: I was going to answer D but fverdell82156 got to it first! So I have to agree with him! It is D!
Answer:
1.Respiration of animals and plants.
2.The burning of fossil fuels.
3.Bacteria decompose corpses.
Answer:
The same number of atoms of each element must appear on both sides of a chemical equation. However, simply writing down the chemical formulas of reactants and products does not always result in equal numbers of atoms. You have to balance the equation to make the number of atoms equal on each side of an equation.
Explanation:
<u>Answer:</u> The molecular weight of protein is 
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

or,

where,
= Osmotic pressure of the solution = 0.0861 atm
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of protein = 400 mg = 0.4 g (Conversion factor: 1 g = 1000 mg)
= molar mass of protein = ?
= Volume of solution = 5.00 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[25+273]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B25%2B273%5DK%3D298K)
Putting values in above equation, we get:

Hence, the molecular weight of protein is 
Answer:
0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O₃: 2 moles
You can apply the following rule of three: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, 0.15 moles of Fe produce how many moles of Fe₂O₃?

moles of Fe₂O₃= 0.075
<u><em>0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.</em></u>