Answer:
v≤-12, and the graph is left 12
Step-by-step explanation:
(1 - 2x)⁴
(1 - 2x)(1 - 2x)(1 - 2x)(1 - 2x)
[1(1 - 2x) - 2x(1 - 2x)][1(1 - 2x) - 2x(1 - 2x)]
[1(1) - 1(2x) - 2x(1) - 2x(-2x)][1(1) - 1(2x) - 2x(1) - 2x(-2x)]
(1 - 2x - 2x + 4x²)(1 - 2x - 2x + 4x²)
(1 - 4x + 4x²)(1 - 4x + 4x²)
1(1 - 4x + 4x²) - 4x(1 - 4x + 4x²) + 4x²(1 - 4x + 4x²)
1(1) - 1(4x) + 1(4x²) - 4x(1) - 4x(-4x) - 4x(4x²) + 4x²(1) - 4x²(4x) + 4x²(4x²)
1 - 4x + 4x² - 4x + 16x² - 16x³ + 4x² - 16x³ + 16x⁴
1 - 4x - 4x + 4x² + 16x² + 4x² - 16x³ - 16x³ + 16x⁴
1 - 8x + 24x² - 32x³ + 16x⁴
Answer:
x = 1
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
Step-by-step explanation:
<u>Step 1: Define Equation</u>
3(4x - 5) - 4x + 1 = -6
<u>Step 2: Solve for </u><em><u>x</u></em>
- Distribute 3: 12x - 15 - 4x + 1 = -6
- Combine like terms: 8x - 14 = -6
- Isolate <em>x</em> term: 8x = 8
- Isolate <em>x</em>: x = 1
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 3(4(1) - 5) - 4(1) + 1 = -6
- Multiply: 3(4 - 5) - 4 + 1 = -6
- Subtract: 3(-1) - 4 + 1 = -6
- Multiply: -3 - 4 + 1 = -6
- Subtract: -7 + 1 = -6
- Add: -6 = -6
Here we see that -6 does indeed equal -6.
∴ x = 1 is the solution to the equation.
Given:
Side length of square = 2 in
To find:
The area of the square
Solution:
Area of the square:
Area = side × side
= 2 in × 2 in
Area = 4 in²
Therefore, the area of the square is 4 inches².
Answer: Don't know sorry
Step-by-step explanation: