Answer:
I'm not sure about the factors, but it's reflected over the x axis if they helps narrow it down
Answer:
Option C is correct i.e. 2.
Step-by-step explanation:
Given the function is f(x) = x² +8x -2.
We can compare it with general quadratic expression i.e. ax² +bx +c.
Then a = 1, b = 8, c = -2.
We can find the number of real root by finding discriminant of the equation ax² +bx +c =0 as follows:-
D = b² -4ac
D = 8² -4*1*-2
D = 64 +8
D = 72.
When D is a positive value, then we have two real roots of the equation.
Hence, option C is correct i.e. 2.
Well if the two numbers are equal to 5x(8+3).
Lets say that these two numbers are X and Y,
So that would be X + Y = 5(8+3)
which means X + Y = 55
You could write that as a fuctions Y = 55 - X
Now by using the graph you get and the X values of [0,55] ( This means every value from 0 to 55 ), you will get a X and Y value that if you added up together will give you the value of 8(5+33)
An examples for the answers would be
(0,55) (1,54) (2,53) (3,52) (4,51) (5,50) (6,49) ... it goes on until x reaches 55.
Given:
Consider the given expression is

To find:
The radical form of given expression.
Solution:
We have,



![[\because x^{\frac{1}{n}}=\sqrt[n]{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%7D%5D)
![[\because x^{\frac{1}{n}}=\sqrt[n]{x}]](https://tex.z-dn.net/?f=%5B%5Cbecause%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%7D%5D)
Therefore, the required radical form is
.
Answer:

Step-by-step explanation:
f(x) = 9x³ + 2x² - 5x + 4; g(x)=5x³ -7x + 4
Step 1. Calculate the difference between the functions
(a) Write the two functions, one above the other, in decreasing order of exponents.
ƒ(x) = 9x³ + 2x² - 5x + 4
g(x) = 5x³ - 7x + 4
(b) Create a subtraction problem using the two functions
ƒ(x) = 9x³ + 2x² - 5x + 4
-g(x) = <u>-(5x³ - 7x + 4)
</u>
ƒ(x) -g(x)=
(c). Subtract terms with the same exponent of x
ƒ(x) = 9x³ + 2x² - 5x + 4
-g(x) = <u>-(5x³ - 7x + 4)
</u>
ƒ(x) -g(x) = 4x³ + 2x² + 2x
Step 2. Factor the expression
y = 4x³ + 2x² + 2x
Factor 2x from each term
y = 2x(2x² + x + 1)
