Answer:
2.54 seconds
Step-by-step explanation:
We can use the following equation to model the vertical position of the ball:
S = So + Vo*t + a*t^2/2
Where S is the final position, So is the inicial position, Vo is the inicial speed, a is the acceleration and t is the time.
Then, using S = 2.5, So = 0.4, Vo = 14 and a = -9.8 m/s2, we have that:
2.5 = 0.4 + 14*t - 4.9t^2
4.9t^2 - 14t + 2.1 = 0
Solving this quadratic equation, we have that t1 = 2.6983 s and t2 = 0.1588 s.
Between these times, the ball will be higher than 2.5 m, so the amount of time the ball will be higher than 2.5 m is:
t1 - t2 = 2.6983 - 0.1588 = 2.54 seconds
Answer:
(-3, -6, 0)
Step-by-step explanation:
3(-1) = -3
3(-2) = -6
3(0) = 0
Answer:
8 that is your answer
Step-by-step explanation:
Answer:
18 Feet
Step-by-step explanation:
For every 1 inch, the building is 2 feet
There are 9 inches in the building
The equation would be 9 * 2 = 18
The 21st term of the given arithmetic sequence is 83. The nth term of an arithmetic sequence is applied to find the required value where n = 21.
<h3>What is the nth term of an arithmetic series?</h3>
The nth term of an arithmetic sequence is calculated by the formula
aₙ = a + (n - 1) · d
Here the first term is 'a' and the common difference is 'd'.
<h3>Calculation:</h3>
The given sequence is an arithmetic sequence.
3, 7, 11, 15, 19, ....
So, the first term in the sequence is a = 3 and the common difference between the terms of the given sequence is d = 7 - 3 = 4.
Thus, the required 21st term in the sequence is
a₂₁ = 3 + (21 - 1) × 4
⇒ a₂₁ = 3 + 20 × 4
⇒ a₂₁ = 3 + 80
∴ a₂₁ = 83
So, the 21st term in the given arithmetic sequence is 83.
Learn more about the arithmetic sequence here:
brainly.com/question/6561461
#SPJ1