A good first step is writing the amount in terms of ml.
19.2 gallons = 72.68 L = 72680 ml
that would mean it weighs 0.749*720680g = 54437.32ml = 54.437 L
hope that helps :)
Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
what elements are each color over? can you list one from each color so i can answer it
Answer:
1) non equilibrium
mass movement
unsaturated solution
2)equilibrium phase change
Heat of vaporization
condensation
heat of fusion
normal boiling point
vapor pressure
3) equilibrium reaction
saturated solution
Ksp
solubility
Ka
Explanation:
Nonequilibrium processes are those processes that are irreversible. They often lead to an increase in entropy of the system.
In chemical systems, a state of equilibrium is said to have been attained when the rate of the forward process equals the rate of the reverse process. This is true for both chemical reaction and phase changes. A state of equilibrium connotes a constancy in physical properties of a system over a period of time.
Answer is: an oxybromate compound is KBrO₄ (x = 4).
ω(Br) = 43.66% ÷ 100%.
ω(Br) = 0.4366; mass percentage of bromine.
If we take 100 grams of compound:
m(Br) = ω(Br) · 100 g.
m(Br) = 0.4366 · 100 g.
m(Br) = 43.66 g; mass of bromine.
n(Br) = m(Br) ÷ M(Br).
n(Br) = 43.66 g ÷ 79.9 g/mol,
n(Br) = 0.55 mol; amoun of bromine.
From chemical formula (KBrOₓ), amount of potassium is equal to amount of bromine: n(Br) = n(K).
m(K) = 0.55 mol · 39.1 g/mol.
m(K) = 21.365 g; mass of potassium in the compound.
m(O) = 100 g - 21.365 g - 43.66 g.
m(O) =34.97 g; mass of oxygen.
n(O) = 34.97 g ÷ 16 g/mol.
n(O) = 2.185 mol.
n(K) : n(Br) : n(O) = 0.55 mol : 0.55 mol : 2.185 mol /÷ 0.55 mol.
n(K) : n(Br) : n(O) = 1 : 1 : 4.