Answer:
The molar mass of the gas is 44 g/mol
Explanation:
It is possible to solve this problem using Graham's law that says: Rates of effusion are inversely dependent on the square of the mass of each gas. That is:

If rate of effusion of nitrogen is Xdistance / 48s and for the unknown gas is X distance / 60s and mass of nitrogen gas is 28g/mol (N₂):

6,61 = √M₂
44g/mol = M₂
<em>The molar mass of the gas is 44 g/mol</em>
<em></em>
I hope it helps!
Answer:
1
Explanation:
Using the Rydberg formula as:

where,
λ is wavelength of photon
R = Rydberg's constant (1.097 × 10⁷ m⁻¹)
Z = atomic number of atom
n₁ is the initial final level and n₂ is the final energy level
For Hydrogen atom, Z= 1
n₂ = 2
Wavelength = 410.1 nm
Also,
1 nm = 10⁻⁹ m
So,
Wavelength = 410.1 × 10⁻⁹ m
Applying in the formula as:

Solving for n₁ , we get
n₁ ≅ 1
Answer:
The answer is one
Explanation:
I will just type any rubbish here bcuz my answer should be more than 20 words..... Just know the answer is 1
Answer: A
Explanation: Protons and neutrons form the nucleus of the atom, with electrons orbiting it.
A.sound energy
hope u have a good day