It would be 0.341 because if you add 0.229 and 0.112 it will be 0.341
The correct answer to this question is that the length of 14 is it’s half Which would be 7
Answer:
2.08 moles (3 s.f.)
Explanation:
number of moles
= number of atoms ÷ Avogadro's constant
Avogadro's constant= 6.022 ×10²³
Thus, number of moles
= 1.25×10²⁴ ÷ (6.022 ×10²³)
= 2.08 moles (3 s.f.)
Answer : The molar mass of an acid is 266.985 g/mole
Explanation : Given,
Mass of an acid (HX) = 4.7 g
Volume of NaOH = 32.6 ml = 0.0326 L
Molarity of NaOH = 0.54 M = 0.54 mole/L
First we have to calculate the moles of NaOH.

Now we have to calculate the moles of an acid.
In the titration, the moles of an acid will be equal to the moles of NaOH.
Moles of an acid = Moles of NaOH = 0.017604 mole
Now we have to calculate the molar mass of and acid.

Now put all the given values in this formula, we get:


Therefore, the molar mass of an acid is 266.985 g/mole
Answer:
on each side of the salt bridge, which is represented by a double vertical line
Explanation:
While writing a cell notation, the general convention is; anode || cathode. The anode and the cathode are separated by a double line. The anode is written on the lefthand side while the cathode is written on the righthand side.
The cell notation is a shorthand representation of a cell, hence any electrochemical cell can easily be produced based on its cell diagram.