Answer:
<em>The icicle will be moving at 333.54 m/s</em>
Explanation:
<u>Free Fall Motion
</u>
A free-falling object falls under the sole influence of gravity. Any object that is being acted upon only by the force of gravity is said to be in a state of free fall. Free-falling objects do not encounter air resistance.
If an object is dropped from rest in a free-falling motion, it falls with a constant acceleration called the acceleration of gravity, which value is
.
The final velocity of a free-falling object after a time t is given by:
vf=g.t
The icicle falls from rest for 34 seconds. We need to find the speed after that time:
vf = 9.81*34
vf = 333.54 m/s
The icicle will be moving at 333.54 m/s
Answer:
option D
Explanation:
given,
coefficient of friction between wall and tire = µ
speed of motorcycle = s
friction force = f = μ N
where normal force will be equal to centripetal force

for motorcycle to not to slip weight should equal to the centripetal force
now,


where "rg" is constant


Hence, the correct answer is option D
Answer:
Particles can be classified as hadrons – baryons and mesons – and leptons, each with its anti-particle, and they should know that interactions between these particles can be described in terms of transfer of other particles known as vector bosons.
Explanation:
Your Welcome, if you could give me Brainlist I would appreciate it!
Answer:
The magnitude of change in momentum of the ball is
and impulse is also
Explanation:
Given:
Velocity of a pitched ball

Velocity of ball after impact

From the formula of change in momentum,

Here mass is not given in question,
Mass of ball is 
Change in momentum is given by,


Magnitude of change in momentum is

And impulse is given by


So impulse and
Therefore, the magnitude of change in momentum of the ball is
and impulse is also