1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashcka [7]
3 years ago
5

-In the Bohr model, as it is known today, the electron is imagined to move in a circular orbit about a stationary proton. The fo

rce responsible for the electron's circular motion is the electric force of attraction between the electron and the proton. If the speed of the electron were 2.4×105 m/s , what would be the corresponding orbital radius?
-The answer I got was 4x10^-9 , but it is wrong.

(9.0x109) (1.6x10-19 C)2 == 2.304x10-28 Then I divided that by (9.11x10-31 kg)( 2.4 x 105)2 =5.24736 x 10-20

=== 2.304x10-28 / 5.24736 x 10-20 = .000000004

I do not know what I am doing wrong. Please help
Physics
1 answer:
vampirchik [111]3 years ago
4 0

Answer:

4.3859007196\times 10^{-9}\ m

Explanation:

k = Coulomb constant = 8.99\times 10^{9}\ Nm^2/C^2

v = Velocity of electron = 2.4\times 10^5\ m/s

q = Charge of electron = 1.6\times 10^{-19}\ C

m = Mass of electron = 9.11\times 10^{-31}\ kg

r = Radius

The electrical and centripetal force will balance each other

\dfrac{kq^2}{r^2}=\dfrac{mv^2}{r}\\\Rightarrow r=\dfrac{kq^2}{mv^2}\\\Rightarrow r=\dfrac{8.99\times 10^9\times (1.6\times 10^{-19})^2}{9.11\times 10^{-31}\times (2.4\times 10^5)^2}\\\Rightarrow r=4.3859007196\times 10^{-9}\ m

The radius of the orbital is 4.3859007196\times 10^{-9}\ m

You might be interested in
An ideal spring hangs from the ceiling. A 1.95 kg mass is hung from the spring, stretching the spring a distance d=0.0865 m from
uranmaximum [27]

Answer:

kinetic energy = 0.1168 J

Explanation:

From Hooke's law, we know that ;

F = kx

k = F/x

We are given ;

Mass; m = 1.95 kg

Spring stretch; d = x = 0.0865

So, Force = mg = 1.95 × 9.81

k = 1.95 × 9.81/0.0865 = 221.15 N/m

Now, initial energy is;

E1 = mgL + ½k(x - L)²

Also, final energy; E2 = ½kx² + ½mv²

From conservation of energy, E1 = E2

Thus;

mgL + ½k(x - L)² = ½kx² + ½mv²

Making the kinetic energy ½mv² the subject, we have;

½mv² = mgL + ½k(x - L)² - ½kx²

We are given L=0.0325 m

Plugging other relevant values, we have ;

½mv² = (1.95 × 9.81 × 0.0325) + (½ × 221.15(0.0865 - 0.0325)² - ½(221.15 × 0.0865²)

½mv² = 0.62170875 + 0.3224367 - 0.82734979375

½mv² = 0.1168 J

7 0
3 years ago
List some activities that influence health-related fitness
dsp73
Cardio respiratory endurance, muscular strength, muscular endurance
7 0
3 years ago
Stomach acid is a dilute solution of hydrochloric acid (HCl). In this case the word dilute means
vfiekz [6]
I think the correct answer would be that there are a relatively small number of moles of HCl present. Dilute would mean that there are very few solute particles dissolved as compared to the solvent particles in the solution. Hope this helps.
6 0
3 years ago
Read 2 more answers
A plane is landing at an airport. The plane has a massive amount of kinetic energy due to it's motion. When the plane lands, it
marshall27 [118]

Answer:

A. The brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes

Explanation:

Based on the law of conservation of energy, the brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes.

The law of conservation of energy states that energy is neither created nor destroyed in a system but it is transformed from one form to another.

As the airplane slows down, the kinetic energy which is presented in the motion of the plane is gradually converted to potential energy.

The potential energy is the energy due to the position of a body.

8 0
3 years ago
A rocket sled accelerates from rest for a distance of 645 m at 16.0 m/s2. A parachute is then used to slow it down to a stop. If
inessss [21]

Answer:

the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake

Explanation:

This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period

          v² = v₀² + 2 a₁ x

indicate that the initial velocity is zero

          v² = 2 a₁ x

let's calculate

          v = \sqrt {2 \ 15.0 \ 645}

          v = 143.666 m / s

now for the second interval let's find the distance it takes to stop

          v₂² = v² - 2 a₂ x₂

in this part the final velocity is zero (v₂ = 0)

         0 = v² - 2 a₂ x₂

         x₂ = v² / 2a₂

let's calculate

         x₂ = \frac{ 143.666^2 }{2 \  18.2}

         x₂ = 573 m

as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake

3 0
2 years ago
Other questions:
  • A cleaver physics professor wants to create a situation where a block starts from rest at the top of a 31.0° inclined plane and
    13·1 answer
  • You exert of force of 75 newtons on a rock. You push and you push, but you can't budge it. You are exhausted! How much work did
    13·1 answer
  • A car initially at rest accelerates at 10m/s^2. The car’s speed after it has traveled 25 meters is most nearly... A.) 0.0m/s B.)
    12·1 answer
  • 1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
    11·1 answer
  • A long straight wire has fixed negative charge with a linear charge density of magnitude 4.6 nC/m. The wire is to be enclosed by
    13·1 answer
  • State what is meant by graviration potential at a point in an orbit 6.5×10^7<br>​
    8·1 answer
  • How are the heating systems similar and how are they different?
    12·1 answer
  • What can be used to plot the magnetic field around a bar magnet?
    11·1 answer
  • EDGE 2021 WILL GIVE BRAINLIEST
    8·1 answer
  • What is a human endeavor
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!