Yes, this is correct Answer.
Answer:
A. True
Explanation:
When a stone is thrown straight-up, it has an initial velocity which decreases gradually as the stone move to maximum height due to constant acceleration due to gravity acting downward on the stone, at the maximum height the final velocity of the stone is zero. As the stone descends the velocity starts to increase and becomes maximum before it hits the ground.
Height of the motion is given by;

g is acceleration due to gravity which is constant
H is height traveled
u is the speed of throw, which determines the value of height traveled.
Therefore, when the stone is caught at the same height from which it was thrown in the absence of air resistance, the speed of the stone when thrown will be equal to the speed when caught.
Answer:
0.625 c
Explanation:
Relative speed of a body may be defined as the speed of one body with respect to some other or the speed of one body in comparison to the speed of second body.
In the context,
The relative speed of body 2 with respect to body 1 can be expressed as :

Speed of rocket 1 with respect to rocket 2 :



Therefore, the speed of rocket 1 according to an observer on rocket 2 is 0.625 c
Answer:
If I double the current in the inductor, the new total energy will become 4E (option f).
Explanation:
The coil or inductor is a passive component made of an insulated wire that stores energy in the form of a magnetic field due to its form of coiled turns of wire, through a phenomenon called self-induction. In other words, inductors store energy in the form of a magnetic field. The energy stored in the space where there is a magnetic field in the inductor is:

where E is Energy [J], L is Inductance [H] and I is Current [A].
If you double the current in the inductor, then the new value of the current is I'= 2*I. So replacing the new total energy is:

Then:

<em><u>If I double the current in the inductor, the new total energy will become 4E (option f).</u></em>
The second and third laws of thermodynamics states that absolute zero cannot be reached. The correct option among all the options that are given in the question is the third option or option "C". Both the laws actually deal with the relations that exist between heat and other forms of energy. I hope the answer helps you.