1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PSYCHO15rus [73]
3 years ago
12

Explain which theorems definitions or combinations of both can be used to prove that alternate exterior angles are congruent

Mathematics
2 answers:
My name is Ann [436]3 years ago
8 0

Answer:

You can prove that and are congruent using the same method. The converse of this theorem is also true; that is, if two lines and are cut by a transversal so that the alternate exterior angles are congruent.

Step-by-step explanation:


Licemer1 [7]3 years ago
6 0

Answer:

As mentioned in the explanation steps.

Step-by-step explanation:

The following theorem is helpful to prove that the alternate exterior angles are congruent.

If two lines lie in the same plane and parallel to each other. A traversal line intersect these parallel lines at different points, then the alternate exterior angles must be same.

You might be interested in
What is the y-intercept of the line shown ?
makvit [3.9K]
The answer:

7

Explanation:

Look at where the line crosses the y-axis. It crosses it at 7, so that’s your y-intercept
5 0
3 years ago
Pls help i will give you a 5 star rating
docker41 [41]

                                           Question # 1

Given the expression

6^2\div \:3+\left(5+3\cdot \:2\right)-2^3

Follow the PEMDAS order of operations

\mathrm{Calculate\:within\:parentheses}\:\left(5+3\cdot \:2\right)\::\quad 11

=6^2\div \:3+11-2^3

\mathrm{Calculate\:exponents}\:6^2\::\quad 36

=36\div \:3+11-2^3

\mathrm{Calculate\:exponents}\:2^3\::\quad 8

=36\div \:3+11-8

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:36\div \:3\::\quad 12

=12+11-8

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:12+11-8\::\quad 15

=15

Therefore,

6^2\div \:3+\left(5+3\cdot \:2\right)-2^3=15

                                            Question # 2

Given the expression

\frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}

as

4+3^2-\frac{15}{5}

=4+9-\frac{15}{5}      ∵3^2=9

\mathrm{Add\:the\:numbers:}\:4+9=13

=-\frac{15}{5}+13

and

\left(2^4-5\cdot \:3\right)^2

=\left(16-5\cdot \:3\right)^2   ∵ 2^4=16

\mathrm{Multiply\:the\:numbers:}\:5\cdot \:3=15

=\left(16-15\right)^2

\mathrm{Subtract\:the\:numbers:}\:16-15=1

=1^2

\mathrm{Apply\:rule}\:1^a=1

=1

Thus the equation \frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}  becomes

=\frac{-\frac{15}{5}+13}{1}

\mathrm{Divide\:the\:numbers:}\:\frac{15}{5}=3

=\frac{-3+13}{1}

\mathrm{Apply\:rule}\:\frac{a}{1}=a

=-3+13

\mathrm{Add/Subtract\:the\:numbers:}\:-3+13=10

=10

Therefore,

\frac{4+3^2-\frac{15}{5}}{\left(2^4-5\cdot \:3\right)^2}=10

                                                       Question # 3

Given the expression

ab-c^2+2b

Putting a = 2, b = 4, and c = 1 in the expression

=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)

Follow the PEMDAS order of operations

\mathrm{Calculate\:exponents}\:\left(1\right)^2\::\quad 1

=\left(2\right)\left(4\right)-1+2\left(4\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(4\right)\::\quad 8

=8-1+2\left(4\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(4\right)\::\quad 8

=8-1+8

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:8-1+8\::\quad 15

=15

Therefore,

ab-c^2+2b=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)=15

                                                     Question # 4

Given the expression

4d^3+2e\div \:f+de

Putting d = 2, e = 3, and f = 6 in the expression

=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

Follow the PEMDAS order of operations

\mathrm{Calculate\:exponents}\:\left(2\right)^3\::\quad 8

=4\cdot \:8+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:4\cdot \:8\::\quad 32

=32+2\left(3\right)\div \:6+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(3\right)\div \:6\::\quad 1

=32+1+\left(2\right)\left(3\right)

\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(3\right)\::\quad 6

=32+1+6

\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:32+1+6\::\quad 39

=39

Therefore,

4d^3+2e\div \:\:f+de=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)=39

7 0
4 years ago
A line that includes the point (-8,-3) has a slope of -1/9. What is it’s equation in point-slope form?
yulyashka [42]
Y+3=-1/9(X+8) is the equation
4 0
3 years ago
Which of the following sets represents the domain of the function shown?
BartSMP [9]
The domain is   2, 15, 21, 24                                                 

6 0
3 years ago
A flower has ten pedals.During a storm,five of the pedals fall off.Write a decimal to show what part of the pedals is left
olga nikolaevna [1]
The answer is .5 meaning half (1/2) of the petals fell off.
7 0
3 years ago
Other questions:
  • Never mind please ignore this.
    13·2 answers
  • Mr Henderson has 2 bouncy ball vending machines , he buys one bag of the 27 millimeter balls and one bag of the 40 millimeter ba
    15·2 answers
  • A child 4.5 feet tall cast a 6 foot shadow a nearby statue casts a 12 foot shadow what is the height of the statue
    7·2 answers
  • Did he watch the whole movie
    13·2 answers
  • W(x) = 3•3^x+3 Find w(-2)
    11·1 answer
  • I need help 1-3 please help I’ll give brainliest
    15·1 answer
  • What is 1000 degrees celsius in fahrenheit?
    9·1 answer
  • According to the graph, what is the value of the constant in the equation<br> below?
    12·1 answer
  • Find the value of X......
    8·1 answer
  • 2. Leandro trabaja en una panadería, el panadero principal le pidió que calculara a cuántos kilogramos equivale una medida de ha
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!