To find the cofactor of
![A=\left[\begin{array}{ccc}7&5&3\\-7&4&-1\\-8&2&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D7%265%263%5C%5C-7%264%26-1%5C%5C-8%262%261%5Cend%7Barray%7D%5Cright%5D)
We cross out the Row and columns of the respective entries and find the determinant of the remaining
matrix with the alternating signs.
























Therefore in increasing order, we have;

Answer:
i79
Step-by-step explanation:
Answer:
The probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes <em>n</em> > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:

The standard deviation of this sampling distribution of sample proportion is:

Let <em>p</em> = the proportion of keypads that pass inspection at a cell phone assembly plant.
The probability that a randomly selected cell phone keypad passes the inspection is, <em>p</em> = 0.77.
A random sample of <em>n</em> = 111 keypads is analyzed.
Then the sampling distribution of
is:

Compute the probability that the proportion of passed keypads is between 0.72 and 0.80 as follows:


Thus, the probability that the proportion of passed keypads is between 0.72 and 0.80 is 0.6677.
Answer:
C. X= -2.01 and x= 1.67
Step-by-step explanation:

Answer:
-4 83/100 8 3/10
Step-by-step explanation: