Answer and Explanation:
This can be explained as in Rutherford's model of atom the electrons orbits the nucleus which means that they will travel around the nucleus with some velocity and hence radiate electromagnetic waves which results in the loss of energy due to which the electron keeps coming closer and eventually falls into the nucleus.
But Bohr came up with a better explanation as according to the Bohr's atomic model, electrons stay fixed in orbit with certain energy in different shells around the nucleus and can only jump from an energy level to another if that specific amount of energy is supplied to it.
This model is based on the quantization of energy thus giving an explanation why electrons do not fall into the nucleus of an atom.
C is the correct answer beacause it shows where it is happening in this cas “here”.
Answer:
SI unit of k (spring constant) = N/m
Explanation:
We have expression for force in a spring extended by x m given by
F = kx
Where k is the spring constant value.
Taking units on both sides
Unit of F = Unit of k x Unit of x
N = Unit of k x m
Unit of k = N/m
SI unit of k (spring constant) = N/m
Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
That would be <span>the national chairperson
-I hope this helped.</span>