Explanation:
The static pressure is P = ρgh, where ρ is the density of the fluid and h is the depth.
For the first person:
P = (1000 kg/m³) (9.8 m/s²) (2.3 m)
P = 22,500 Pa
For the second person:
P = (1000 kg/m³) (9.8 m/s²) (3 m)
P = 29,400 Pa
Explanation:
Momentum is conserved.
a) In the first scenario, Olaf and the ball have the same final velocity.
mu = (M + m) v
(0.400 kg) (10.9 m/s) = (70.2 kg + 0.400 kg) v
v = 0.0618 m/s
b) In the second scenario, the ball has a final velocity of 8.10 m/s in the opposite direction.
mu = mv + MV
(0.400 kg) (10.9 m/s) = (0.400 kg) (-8.10 m/s) + (70.2 kg) v
v = 0.108 m/s
Energy can be released and absorbed during the formation of a solution, not one or the other. When a solute interacts with the solvent, energy is absorbed so the solvent can overcome the intermolecular bonds of the solute and energy is released, most commonly, in the form of heat, light, or a gaseous byproduct.
Roughly 1609 meters in one mile