Answer:
![\displaystyle V_{ \text{pyramid}}= 64 \: {cm}^{3}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20V_%7B%20%5Ctext%7Bpyramid%7D%7D%3D%2064%20%5C%3A%20%20%7Bcm%7D%5E%7B3%7D%20)
Step-by-step explanation:
we are given surface area and the length of the square base
we want to figure out the Volume
to do so
we need to figure out slant length first
recall the formula of surface area
![\displaystyle A_{\text{surface}}=B+\dfrac{1}{2}\times P \times s](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A_%7B%5Ctext%7Bsurface%7D%7D%3DB%2B%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20P%20%5Ctimes%20s)
where B stands for Base area
and P for Base Parimeter
so
![\sf\displaystyle \: 144=(8 \times 8)+\dfrac{1}{2}\times (8 \times 4) \times s](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20%5C%3A%20144%3D%288%20%5Ctimes%208%29%2B%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%288%20%5Ctimes%204%29%20%5Ctimes%20s)
now we need our algebraic skills to figure out s
simplify parentheses:
![\sf\displaystyle \: 64+\dfrac{1}{2}\times32\times s = 144](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20%5C%3A%2064%2B%5Cdfrac%7B1%7D%7B2%7D%5Ctimes32%5Ctimes%20s%20%3D%20144)
reduce fraction:
![\sf\displaystyle \: 64+\dfrac{1}{ \cancel{ \: 2}}\times \cancel{32} \: ^{16} \times s = 144 \\ 64 + 16 \times s = 144](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20%5C%3A%2064%2B%5Cdfrac%7B1%7D%7B%20%5Ccancel%7B%20%5C%3A%202%7D%7D%5Ctimes%20%5Ccancel%7B32%7D%20%20%5C%3A%20%5E%7B16%7D%20%5Ctimes%20s%20%3D%20144%20%5C%5C%2064%20%2B%2016%20%5Ctimes%20s%20%3D%20144)
simplify multiplication:
![\displaystyle \: 16s + 64 = 144](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%2016s%20%2B%2064%20%3D%20144)
cancel 64 from both sides;
![\displaystyle \: 16s = 80](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%2016s%20%3D%2080)
divide both sides by 16:
![\displaystyle \: \therefore \: s = 5](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%5Ctherefore%20%5C%3A%20s%20%3D%205)
now we'll use Pythagoras theorem to figure out height
according to the theorem
![\displaystyle \: {h}^{2} + (\frac{l}{2} {)}^{2} = {s}^{2}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%20%7Bh%7D%5E%7B2%7D%20%20%2B%20%20%28%5Cfrac%7Bl%7D%7B2%7D%20%7B%29%7D%5E%7B2%7D%20%20%3D%20%20%7Bs%7D%5E%7B2%7D%20)
substitute the value of l and s:
![\displaystyle \: {h}^{2} + (\frac{8}{2} {)}^{2} = {5}^{2}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%20%7Bh%7D%5E%7B2%7D%20%20%2B%20%20%28%5Cfrac%7B8%7D%7B2%7D%20%7B%29%7D%5E%7B2%7D%20%20%3D%20%20%7B5%7D%5E%7B2%7D%20)
simplify parentheses:
![\displaystyle \: {h}^{2} + (4 {)}^{2} = {5}^{2}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%20%7Bh%7D%5E%7B2%7D%20%20%2B%20%20%284%20%7B%29%7D%5E%7B2%7D%20%20%3D%20%20%7B5%7D%5E%7B2%7D%20)
simplify squares:
![\displaystyle \: {h}^{2} + 16 = 25](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%20%7Bh%7D%5E%7B2%7D%20%20%2B%20%2016%20%20%3D%20%2025)
cancel 16 from both sides:
![\displaystyle \: {h}^{2} = 9](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%20%7Bh%7D%5E%7B2%7D%20%20%20%3D%20%209)
square root both sides:
![\displaystyle \: \therefore \: {h}^{} = 3](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5C%3A%20%20%20%5Ctherefore%20%5C%3A%20%7Bh%7D%5E%7B%7D%20%20%20%3D%20%203)
recall the formula of a square pyramid
![\displaystyle V_{pyramid}=\dfrac{1}{3}\times A\times h](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V_%7Bpyramid%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%20A%5Ctimes%20h)
where A stands for Base area (l²)
substitute the value of h and l:
![\sf\displaystyle V_{ \text{pyramid}}=\dfrac{1}{3}\times \{8 \times 8 \}\times 3](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20V_%7B%20%5Ctext%7Bpyramid%7D%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%20%20%5C%7B8%20%5Ctimes%208%20%5C%7D%5Ctimes%203)
simplify multiplication:
![\sf\displaystyle V_{ \text{pyramid}}=\dfrac{1}{3}\times 64\times 3](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20V_%7B%20%5Ctext%7Bpyramid%7D%7D%3D%5Cdfrac%7B1%7D%7B3%7D%5Ctimes%20%2064%5Ctimes%203)
reduce fraction:
![\sf\displaystyle V_{ \text{pyramid}}=\dfrac{1}{ \cancel{ 3 \: }}\times 64\times \cancel{ \: 3}](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20V_%7B%20%5Ctext%7Bpyramid%7D%7D%3D%5Cdfrac%7B1%7D%7B%20%5Ccancel%7B%203%20%5C%3A%20%7D%7D%5Ctimes%20%2064%5Ctimes%20%5Ccancel%7B%20%5C%3A%20%203%7D)
hence,
![\sf\displaystyle V_{ \text{pyramid}}= 64 \: {cm}^{3}](https://tex.z-dn.net/?f=%20%5Csf%5Cdisplaystyle%20V_%7B%20%5Ctext%7Bpyramid%7D%7D%3D%2064%20%5C%3A%20%20%7Bcm%7D%5E%7B3%7D%20)
Answer:
30 that singular tickets for each friend and if your asking for total it would be 120. :)
Step-by-step explanation:
They paid 100 but they had a 20$ off coupon, this means the orignial total would be $120 so 120 divided by 4 (there's four people) = $30 each :)
hope this helped
Hello,
y=k*(x-2)(x-4)
and is passing throught (3,1)
==>1=k*(3-2)(3-4)==>k=-1
y=-(x-2)(x-4) is an answer
Answer:
8
Step-by-step explanation:
Okay so there is 32 cups in 8 quarts and he sold 6 cups Saturday and 18 cups Sunday.
Add 8+18
Subtract 24-32 to get 8
5: 5, 10,15,20,25 ( Not sure if 5 counts as one, if it does not, then 30 is another multiple.)