<span>y-2x=-6 and 5x-y=9
step 1: isolate y in the first equation
y = 2x - 6
step 2: substitute the y value on the 2th equation:
5x-(2x-6)=9
step 3: solve the present equation:
5x - 2x + 6 = 9
3x = 9-6
3x = 3
x = 1
step 4: get the y value by replacing the value of x in </span>y = 2x - 6:
<span>
y = 2*1 - 6
y = 2 - 6
y = -4
S={1, -4}
</span>
Answer:
its -0.4, are those rlly the options? if they are jus round up and do -1
The formula for the area of a triangle is 1/2*b*h=a.
1/2*b*14=56
b*14=112
b=8
Answer:
d = -1/3, 0
Step-by-step explanation:
Subtract the constant on the left, take the square root, and solve from there.
(6d +1)^2 + 12 = 13 . . . . given
(6d +1)^2 = 1 . . . . . . . . . .subtract 12
6d +1 = ±√1 . . . . . . . . . . take the square root
6d = -1 ±1 . . . . . . . . . . . .subtract 1
d = (-1 ±1)/6 . . . . . . . . . . divide by 6
d = -1/3, 0
_____
Using a graphing calculator, it is often convenient to write the function so the solutions are at x-intercepts. Here, we can do that by subtracting 13 from both sides:
f(x) = (6x+1)^ +12 -13
We want to solve this for f(x)=0. The solutions are -1/3 and 0, as above.
Answer:
a) 0.96
b) 0.016
c) 0.018
d) 0.982
e) x = 2
Step-by-step explanation:
We are given with the Probability density function f(x)= 2/x^3 where x > 1.
<em>Firstly we will calculate the general probability that of P(a < X < b) </em>
P(a < X < b) =
=
=
{ Because
}
=
=
=
=
a) Now P(X < 5) = P(1 < X < 5) {because x > 1 }
Comparing with general probability we get,
P(1 < X < 5) =
=
= 0.96 .
b) P(X > 8) = P(8 < X < ∞) = 1/
- 1/∞ = 1/64 - 0 = 0.016
c) P(6 < X < 10) =
=
= 0.018 .
d) P(x < 6 or X > 10) = P(1 < X < 6) + P(10 < X < ∞)
=
+ (1/
- 1/∞) = 1 - 1/36 + 1/100 + 0 = 0.982
e) We have to find x such that P(X < x) = 0.75 ;
⇒ P(1 < X < x) = 0.75
⇒
= 0.75
⇒
= 1 - 0.75 = 0.25
⇒
=
⇒
= 4 ⇒ x =
Therefore, value of x such that P(X < x) = 0.75 is 2.