]Eigenvectors are found by the equation

implying that

. We then can write:
And:
Gives us the characteristic polynomial:

So, solving for each eigenvector subspace:
![\left [ \begin{array}{cc} 4 & 2 \\ 5 & 1 \end{array} \right ] \left [ \begin{array}{c} x \\ y \end{array} \right ] = \left [ \begin{array}{c} -x \\ -y \end{array} \right ]](https://tex.z-dn.net/?f=%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bcc%7D%204%20%26%202%20%5C%5C%205%20%26%201%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20x%20%5C%5C%20y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20%3D%20%5Cleft%20%5B%20%5Cbegin%7Barray%7D%7Bc%7D%20-x%20%5C%5C%20-y%20%5Cend%7Barray%7D%20%5Cright%20%5D%20)
Gives us the system of equations:
Producing the subspace along the line

We can see then that 3 is the answer.
it's a right angled triangle so we will use hypotenuse formula to get the value of x
hypotenuse formula = a² + b² = c²
a = side of the triangle
b = base of traingle
c = hypotenuse ( can be written as h too)
and the formula can also be written as.
c² = a² + b²
<em><u>therefore</u></em><em><u>,</u></em><em><u> </u></em><em><u>x </u></em><em><u>=</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u>.</u></em><em><u>1</u></em>
<em><u>hope </u></em><em><u>this </u></em><em><u>answer </u></em><em><u>helps</u></em><em><u> </u></em><em><u>you </u></em><em><u>dear.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>take </u></em><em><u>care!</u></em>
LCM= 40
factors of 5- 5, 10, 15, 20, 25, 30, 35, 40*
factors of 8- 8, 16, 24, 32, 40*