The discriminant can be found using the formula b^2-4ac
First put your equation in standard form, where all your values are on one side, and just add f(x) or y in front of your equation.
y= 8p^2-8p+2
The first value of your equation is a (a=8)
The second term of your equation is b (b=-8)
The last term of your equation is c (c=2)
Plug in the values to the discriminant equation b^2-4ac
The <em>additional information</em> needed to prove that both triangles are congruent by the SSS Congruence Theorem would be: <em>C. HJ ≅ LN</em>
<em>Recall:</em>
- Based on the Side-Side-Side Congruence Theorem, (SSS), two triangles can be said to be congruent to each other if they have three pairs of congruent sides.
Thus, in the two triangles given, the two triangles has:
- Two pairs of congruent sides - HI ≅ ML and IJ ≅ MN
Therefore, an <em>additional information</em> needed to prove that both triangles are congruent by the SSS Congruence Theorem would be: <em>C. HJ ≅ LN</em>
<em />
Learn more about SSS Congruence Theorem on:
brainly.com/question/4280133
so, is a semi-circle, half a circle, recall a circle has a total of 360°, so half of that will be 180°.
the diameter of that circle is 10, so its radius is half that, or 5.
![\bf \textit{arc's length}\\\\ s=\cfrac{\theta \pi r}{180}~~ \begin{cases} r=radius\\ \theta =angle~in\\ \qquad degrees\\[-0.5em] \hrulefill\\ \theta =180\\ r=5 \end{cases}\implies s=\cfrac{(180)(\pi )(5)}{180}\implies s=5\pi \stackrel{\pi =3.14}{\implies s=15.7}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barc%27s%20length%7D%5C%5C%5C%5C%20s%3D%5Ccfrac%7B%5Ctheta%20%5Cpi%20r%7D%7B180%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20%5Ctheta%20%3Dangle~in%5C%5C%20%5Cqquad%20degrees%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20%5Ctheta%20%3D180%5C%5C%20r%3D5%20%5Cend%7Bcases%7D%5Cimplies%20s%3D%5Ccfrac%7B%28180%29%28%5Cpi%20%29%285%29%7D%7B180%7D%5Cimplies%20s%3D5%5Cpi%20%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7B%5Cimplies%20s%3D15.7%7D)
My understanding it would be letter ( i ) because it is imaginary.
My final answer is automatic 588