Answer:
Step-by-step explanation:
x2-9 = 0
Area of one dimension = x-3= 0
So, x2= 9
Square root on both sides;
x= +3 and -3
x-3 is one side
x+3 is the other dimension
We know that
1+cot ²∅=csc² ∅
cot ∅=4/7
so
1+(4/7)²=csc² ∅
csc² ∅=1+(16/49)
csc² ∅=(65/49)
csc ∅=(√65)/7
remember that
csc ∅=1/sin ∅
sin ∅=1/csc ∅------> sin ∅=7/√65-----> sin ∅=(7√65)/65
the answer is
the best identity to find sin ∅ is
1+cot ²∅=csc² ∅
V=π·r²·h
V=3.14(15²)=706.5
V=706.5x15=10597.5
V=10597.5