Answer:
They apear this way because of refraction
Explanation:
The answer to the problem is A because the velocity of the plane changes when she turns it
Answer:
Explanation:
I'm not sure what is being asked, not the units of "1.5." I don't know of potassium "ioxicide." Was "dioxide" intended?
I'll assume the question is "What is the concentration, in Molar, of 1.5g of potassium dioxide in 150cm^3 of water (150cm^3 is 150 ml).
The molar mass of K2O, potassium dioxide, is 94.2 g/mole. 1.5g is (1.5g/94.2 g/mole) or 0.0159 moles of K2O. The definition of Molar is moles/liter. So take the moles of K2O and divide by the liters, which is 0.150L in this case.
(0.0159 moles K2)/0.150 L = 0.106 M K2O
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>