Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
A
Step-by-step explanation:
A graph that represents a proportional relationship usually has the line cutting through the line of origin (0, 0).
The graph in option A does not have the line passing through the point of origin (0, 0), therefore, it does not represent a proportional relationship.
For an equation that represents a proportional relationship, it is written in the form of y = kx
Where, k is the constant of proportionality.
Therefore, the two equations given represents a proportional relationship.
Answer:
Exactly one solution
Explanation:
The first step we need to take to find the answer is to find the value of y.
7(y+3)=5y+8
Expand the parentheses
7y+21=5y+8
Subtract both sides by 21
7y+21-21=5y+8-21
7y=5y-13
Subtract both sides by 5y
7y-5y=5y-13-5y
2y=-13
Divide both sides by 2
2y/2=-13/2
y=-6.5
Now, we plug y back into the original equation.
7(y+3)=5y+8
7(-6.5+3)=5(-6.5)+8
Expand the parentheses
-45.5+21=-32.5+8
-24.5=-24.5
Because both sides of the equation is equal and the equation is true, we can conclude that the equation has one solution.
I hope this helps!
The answer is A 1/2 sorry if I’m wrong if not A its c