10000 digits can be used for 4 digit A.T.M code.
<u>Solution:</u>
Given that A.T.M required 4 digit codes using the digits 0 to 9.
Need to determine how many four digit code can be used.
We are assuming that number starting with 0 are also valid ATM codes that means 0789 , 0089 , 0006 and 0000 are also valid A.T.M codes.
Now we have four places to be filled by 0 to 9 that is 10 numbers
Also need to keep in mind that repetition is allowed in this case means if 9 is selected at thousands place than also it is available for hundreds, ones or tens place .
First digit can be selected in 10 ways that is from 0 to 9.
After selecting first digit, second digit can be selected in 10 ways that is 0 to 9 and same holds true for third and fourth digit.
So number of ways in which four digit number is created = 10 x 10 x 10 x 10 = 10000 ways
Hence 10000 digits can be used for 4 digit A.T.M code.
Answer:
Circumference is 2piR =31.4
Area is pir^2=78.5
Step-by-step explanation:
Each of the pairs of the opposite angles made by two intersecting lines are called vertical angles. The correct option is A.
<h3>What are vertical angles?</h3>
Each of the pairs of the opposite angles made by two intersecting lines are called vertical angles.
The proof can be completed as,
Given the information in the figure where segment UV is parallel to segment WZ.: Segments UV and WZ are parallel segments that intersect with line ST at points Q and R, respectively. According to the given information, segment UV is parallel to segment WZ, while ∠SQU and ∠VQT are vertical angles. ∠SQU ≅ ∠VQT by the Vertical Angles Theorem. Because ∠SQU and ∠WRS are corresponding angles, they are congruent according to the Corresponding Angles Theorem. Finally, ∠VQT is congruent to ∠WRS by the Transitive Property of Equality.
Hence, the correct option is A.
Learn more about Vertical Angles:
brainly.com/question/24460838
#SPJ1
Answer:
i have made it in above picture
hope it helps
The domain is the set of all x values which are defined (appear on the graph) of the function. In this system, all values from negative infinity to 0, but not including zero, and all values above zero, through positive infinity, are valid. We can write this in set builder notation as x: (-∞,0)∪(0,∞).
The range is the set of all y values which are defined in the function. Like the domain, the range of this function contains all value from negative infinity to positive infinity except zero. Same notation: y: : (-∞,0)∪(0,∞).