1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frez [133]
3 years ago
15

The ratio of boys and girls at the beach cleanup was 7:8. If there were 42 boys, how much girls were there

Mathematics
1 answer:
ratelena [41]3 years ago
3 0

Answer:

48 girls

Step-by-step explanation:

Divide 42 by 7 and then multiply the answer by 8.  So 42/7 is 6 and 6 multiplied by 8 is 48 so if there are 42 boys there are 48 girls.

You might be interested in
In a sample of 100 students, 30 wear size medium t-shirts. Use a proportion to calculate approximately how many medium t-shirts
Talja [164]

Answer:

282 students

Step-by-step explanation:

7 0
3 years ago
Tan^2 x+sec^2 x=1 for all values of x.<br> True or False
gogolik [260]
False 

because tan^2 45 =  1^2 = 1
and sec^2 x =  1/ cos^2 45  =  (sqrt2)^2 = 2

so the sum = 3
3 0
2 years ago
Read 2 more answers
John is creating a Thanksgiving display at the store where he works, using only canned pumpkin and canned green beans. He needs
motikmotik

Answer:

19

Step-by-step explanation:

The ratio of green beans (g) to pumpkin (p) is ...

... g : p = 1 : 5

Then the ratio of green beans to the total is ...

... g : (g+p) = 1 : (1+5) = 1 : 6

Since you have

... g/total = (1/6)

... g = total · 1/6

you can substitute 114 for the total to find ...

... g = 114 · 1/6 = 19

6 0
3 years ago
A sphere has a volume of V=900 in cubed. What is the surface area?
ycow [4]
First, we must solve for the radius of the sphere:
V=\frac{4}{3}\pir^{3}
r=(3\frac{V}{4 \pi })^{ \frac{1}{3} }
r=(3*\frac{900}{4 \pi })^{ \frac{1}{3} }
r≈5.99

Second, we must solve for surface area:
A=4\pir^{2}
A=4*\pi*5.99^{2}
A≈450.88 in^{2}
4 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
2 years ago
Other questions:
  • Solve this quadratic equation using the quadratic formula.<br><br> 5 - 10x - 3x2 = 0
    7·1 answer
  • Simplify the fraction 12 1/8
    9·2 answers
  • Please can someone help!
    9·1 answer
  • Which property states that for all real numbers, x, y and z, if x = y and y = z, then x = z ?
    7·1 answer
  • Solve the problem give the equation using x as the variable and give the answer. If 1 is subtracted from a number and this diffe
    8·1 answer
  • For the second week of June, Kevin Adams worked 46 hours. Kevin earns $18.40 an hour. His employer pays overtime for all hours w
    6·1 answer
  • Naomi has 50 red beads and white beads. The number of red beads is 1 more than 6 times the number of white beads. How Many red b
    12·1 answer
  • Nine times the input minus seven is equal to the output. If the input is -1, what is the output?
    10·1 answer
  • Help with math word problem grade 9 level
    5·1 answer
  • Help, please the question and thank you
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!