Hi! actually, the y intercept is 0, 8. hopefully this helps
Answer:
a)

b)
The total amount accrued, principal plus interest, from compound interest on an original principal of $ 4,200.00 at a rate of 3.6% per year compounded 12 times per year over 10 years is $5667.28.
Step-by-step explanation:
a. Write the function that represents the value of the account at any time, t.
The function that represents the value of the account at any time, t

where
P represents the principal amount
r represents Annual Rate
n represents the number of compounding periods per unit t, at the end of each period
t represents the time Involve
b) What will the value be after 10 years?
Given
The principal amount P = $4200
Annual Rate r = 3.6% = 3.6/100 = 0.036
Compounded monthly = n = 12
Time Period = t
To Determine:
The total amount A = ?
Using the formula

substituting the values


$
Therefore, the total amount accrued, principal plus interest, from compound interest on an original principal of $ 4,200.00 at a rate of 3.6% per year compounded 12 times per year over 10 years is $5667.28.
Isolate the variable by dividing each side by factors that don't contain the variable I believe the correct answer is 1. c=ab-da
Answer:
37.5 miles
Step-by-step explanation:
We can find the rate of conversion by dividing kilometers by miles. 5÷8=1.6, so 1.6 km = 1 mile. Now we can divide 60 by 1.6 to find miles.

Hope this helped!
Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!