Answer: jupiter
Explanation: because jupiter is much further than the mar from the sun
Answer:
The correct option is
B. PEA = KEC + PEC
Explanation:
The potential energy is the energy possessed due to position
From the image the point with the highest position and therefore the most potential energy and the lowest or zero kinetic energy is point A
Given that we have;
Total mechanical energy = The potential energy + The kinetic energy
Where there is constant total mechanical energy in the system, then, at the point A where the kinetic energy is zero, the potential energy is equal to the total mechanical of the system, we have;
Total mechanical energy = The potential energy at A = PEA
Total mechanical energy = PEA
At point C where we have the total mechanical energy presented as follows;
Total mechanical energy = Kinetic energy at C + Potential energy at C
Total mechanical energy = KEC + PEC
Therefore;
PEA = KEC + PEC.
Answer: Calcite is softer than fluorite.
Answer:
128.4 g
Explanation:
Step 1: Given data
- Mass percent of element X in X(NO₃)₂: 52.55%
- Mass of the element X in the sample: 67.50 g
Step 2: Determine the total mass of the sample
The mass percent of element X in X(NO₃)₂ is 52.55%, that is, there are 52.55 g of X every 100 g of X(NO₃)₂. Then, the mass of X(NO₃)₂ that contains 67.50 g of X is:
67.50 g X × 100 g X(NO₃)₂/52.55 g X = 128.4 g X(NO₃)₂
Answer:
D
Explanation:
We can use the mole ratio to calculate the partial pressure. The total number of moles is 0.2 + 0.2 + 0.1 = 0.5 moles
Now, we know that the mole fraction of the argon gas would be 0.2/0.5
The partial pressure is as follows. To calculate this, we simple multiply the number of moles by the total pressure.
0.2/0.5 * 5 = 1.0/0.5 = 2.00atm
D