Given that the diameter: d= 0.0625 inch.
So, radius of the wire : r =
= 0.03125 inch
Now the formula to find the cross-sectional area of wire ( circle) is:
A = πr²
= 3.14 * (0.03125)² Since, π = 3.14 and r = 0.03125
=3.14 * 0.000976563
= 0.003066406
= 0.00307 (Rounded to 5 decimal places).
Hence, cross-sectional area of a wire is 0.00307 square inches.
Hope this helps you!
Answer:
4 cm
Step-by-step explanation:
The equation of a parabola with its vertex at the origin can be written as ...
y = 1/(4p)x^2
The problem statement tells us that one point on the parabola is (x, y) = (12, 9). We can put these values into the equation and solve for p, the distance from the focus to the vertex.
9 = 1/(4p)(12^2)
9×4/144 = 1/p = 1/4 . . . . . . . . multiply by the inverse of the coefficient of 1/p
Then p = 4, and the bulb is 4 cm from the vertex.
Answer:
The absolute value of -9 is less than 9 I'm pretty sure