Steps to solve:
-1/2 + (3/4 * 4/9)
~Simplify
-1/2 + 14/36
~Simplify
-1/2 + 7/18
~Find common denominators
-9/18 + 7/18
~Add
-2/18 or -1/9
Best of Luck!
Answer:
Yes, there are infinite triangles with the same three angles but different side lengths
Step-by-step explanation:
we know that
If two triangles are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
therefore
There are infinite triangles with the same three angles but different side lengths
NO. It's FALSE.

therefore 0.3801 > 0.3711
The first two pairs.. just substitute the x-coordinate and find y
-------------------------------------------------------------------------
Given Information
-------------------------------------------------------------------------
Total number of people = 165
Adult = $6
Child = $2
Total collected = $618
-------------------------------------------------------------------------
Assumptions
-------------------------------------------------------------------------
Let x be the number of adults and y be the number of children
-------------------------------------------------------------------------
Form equations
-------------------------------------------------------------------------
Total number of people
x + y = 165
Total amount collected
6x + 2y = 618
-------------------------------------------------------------------------
Ans: The two equations are x + y = 165 and 6x + 2y = 618
-------------------------------------------------------------------------
The question is not asking for it but if you need to solve the equation to find the answer to x and y
-------------------------------------------------------------------------
Present the two equations and solve for x and y
-------------------------------------------------------------------------
x + y = 165 ------------------------- (eqn 1)
6x + 2y = 618 ------------------------- (eqn 2)
(eqn 1) :
x + y = 165
x = 165 - y ------------------------- substitute into (eqn 2)
6(165 - y) + 2y = 618
990 - 6y + 2y = 618
4y = 990 - 618
4y = 372
y = 93 ------------------------- substitute into (eqn 1)
x + y = 165
x + 93 = 165
x = 165 - 93
x = 72
x = 72 and y = 93
-------------------------------------------------------------------------
Ans: 72 adults and 93 children
-------------------------------------------------------------------------