Equation: 7x - 3y = 21
3y = 7x - 21
Divide both sides by 3,
y = 7/3x - 7
Compare it with principle equation, y = mx + c
Here, slope (m) = 7/3
In short, Your Answer would be: 7/3
Hope this helps!
4 because it has four sides
X= -b over 2a = --6 over 2×1=3
y=3²-6(3)-7=-16
vertex is (3,-16)
axis of symmetry is 3
Answer:
The mean is 
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the mean of this normal distribution if the probability of scoring above x = 209 is 0.0228?
This means that when X = 209, Z has a pvalue of 1-0.0228 = 0.9772. So when X = 209, Z = 2.





The mean is 
Answer:
<h2>14mph</h2>
Step-by-step explanation:
Given the gas mileage for a certain vehicle modeled by the equation m=−0.05x²+3.5x−49 where x is the speed of the vehicle in mph. In order to determine the speed(s) at which the car gets 9 mpg, we will substitute the value of m = 9 into the modeled equation and calculate x as shown;
m = −0.05x²+3.5x−49
when m= 9
9 = −0.05x²+3.5x−49
−0.05x²+3.5x−49 = 9
0.05x²-3.5x+49 = -9
Multiplying through by 100
5x²+350x−4900 = 900
Dividing through by 5;
x²+70x−980 = 180
x²+70x−980 - 180 = 0
x²+70x−1160 = 0
Using the general formula to get x;
a = 1, b = 70, c = -1160
x = -70±√70²-4(1)(-1160)/2
x = -70±√4900+4640)/2
x = -70±(√4900+4640)/2
x = -70±√9540/2
x = -70±97.7/2
x = -70+97.7/2
x = 27.7/2
x = 13.85mph
x ≈ 14 mph
Hence, the speed(s) at which the car gets 9 mpg to the nearest mph is 14mph