Answer:
1.35 × 10⁴ kg/m³ at 22 °C; 1.34 × 10⁴ kg/m³ at 100 °C
Explanation:
The cubic expansivity (γ) of a liquid is the fractional change in volume per unit change in temperature.
Multiply by V₀ΔT and transpose
ΔV = γV₀ΔT
and
V = V₀ + ΔV
===============
<em>At 0 °C
</em>
Assume you have 1 m³ of Hg
ρ = m/V Multiply by V and transpose
m = ρV
ρ = 1.36 × 10⁴ kg/m³
m = 1.36 × 10⁴ × 1 = 1.36 × 10⁴ kg
===============
<em>At 22 °C
</em>
Assume that you have 1 m³ of Hg
γ = 180 × 10⁻⁶ K⁻¹
ΔT = 22 °C – 0 °C = 22 °C
ΔV = 180 × 10⁻⁶ × 22
ΔV = 3.96 × 10⁻³ m³ Calculate volume
V = 1 + 0.00396
V = 1.00396 m³ Calculate density
ρ = 1.36 × 10⁴/1.00396
ρ = 1.35 × 10⁴ kg/m³
===============
<em>At 100 °C
</em>
ΔT = 100 °C – 0 °C = 100 °C
ΔV = 180 × 10⁻⁶ × 100
ΔV = 0.0180 m³ Calculate volume
V = 1 + 0.0180
V = 1.0180 m³ Calculate density
ρ = 1.36 × 10⁴/1.0180
ρ = 1.34 × 10⁴ kg/m³
Answer:
In glucose there are 6 carbon atom, atomic weight carbon is 12, so the molar mass is 72 and the percentage composition of carbon in C6H12O6=(72180)×100%=40% percentage by the mass.
A. Identical :) Hope it helps
Answer:
The degree of compactness of a substance
Answer:
K2S(aq) + BaCl2(aq) = 2KCl(aq) + BaS(s)
In the image attached, it is explained how the solution is balanced.