Answer:
y and x are variables, the 5 in 5y is a coefficient so is the 4 in 4x, the 3 is called a constant
Step-by-step explanation:
Answer:
90 -63=27 so the answer is 27 because complementary angles add to 90
Using probability concepts, it is found that:
a)
probability of drawing a card below a 6.
b)
odds of drawing a card below a 6.
c) We should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
------------------------------
- A probability is the <u>number of desired outcomes divided by the number of total outcomes</u>.
Item a:
- In a standard deck, there are 52 cards.
- There are 4 types of cards, each numbered 1 to 13. Thus,
are less than 6.
Then:

probability of drawing a card below a 6.
Item b:
- Converting from probability to odd, it is:

odds of drawing a card below a 6.
Item c:
- The law of large numbers states that with a <u>large number of trials, the percentage of each outcome is close to it's theoretical probability.</u>
- Thus, we should expect to draw a card below 6 about 4 times out of 13 attempts, which as an odd, it also 4 times for every 9 times we draw a card above 6, which is the third option.
A similar problem is given at brainly.com/question/24233657
Answer:
4.75% probability that the line pressure will exceed 1000 kPa during any measurement
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that the line pressure will exceed 1000 kPa during any measurement
This is 1 subtracted by the pvalue of Z when X = 1000. So



has a pvalue of 0.9525
1 - 0.9525 = 0.0475
4.75% probability that the line pressure will exceed 1000 kPa during any measurement
Answer:
No, Christy subtracted to find her jogging rate. Not added.
Step-by-step explanation:
The common diffrnece is +4 so she whould have to add. I hope this helps